ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: We observed a sample of 20 representative Herbig Ae/Be stars and 5 A-type debris discs with PACS onboard Herschel, as part of the GAS in Protoplanetary Systems (GASPS) project. The observations were done in spectroscopic mode, and cover the far-infrared lines of [OI], [CII], CO, CH+, H20, and OH. We have a [OI]63 micro/ detection rate of 100% for the Herbig Ae/Be and 0% for the debris discs. The [OI] 145 micron line is only detected in 25% and CO J = 18-17 in 45% (and fewer cases for higher J transitions) of the Herbig Ae/Be stars, while for [CII] 157 micron, we often find spatially variable background contamination. We show the first detection of water in a Herbig Ae disc, HD 163296, which has a settled disc. Hydroxyl is detected as well in this disc. First seen in HD 100546, CH+ emission is now detected for the second time in a Herbig Ae star, HD 97048. We report fluxes for each line and use the observations as line diagnostics of the gas properties. Furthermore, we look for correlations between the strength of the emission lines and either the stellar or disc parameters, such as stellar luminosity, ultraviolet and X-ray flux. accretion rate, polycyclic aromatic hydrocarbon (PAH) band strength, and flaring. We find that the stellar ultraviolet flux is the dominant excitation mechanism of [OI] 63 micron, with the highest line fluxes being found in objects with a large amount of flaring and among the largest PAH strengths. Neither the amount of accretion nor the X-ray luminosity has an influence on the line strength. We find correlations between the line flux of [OI]63 micron and [OI] 145 micron, CO J = IS-17 and [OI] 6300 A, and between the continuum flux at 63 micron and at 1.3 mm, while we find weak correlations between the line flux. of [OI] 63 micron and the PAH luminosity, the line flux of CO J = 3-2, the continuum flux at 63 pm, the stellar effective temperature, and the Br-gamma luminosity. Finally, we use a combination of the [OI] 63 micron and C(12)O J = 2-1 line fluxes to obtain order of magnitude estimates of the disc gas masses, in agreement with the values that we find from detailed modelling of two Herbig Ae/Be stars, HD 163296 and HD 169142.
    Keywords: Astronomy
    Type: GSFC.JA.7258.2012 , Astronomy and Astrophysics; 544; A78
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: HD 181327 is a young Main Sequence F5/F6 V star belonging to the Beta Pictoris moving group (age approx 12 Myr). It harbors an optically thin belt of circumstellar material at approx90 AU, presumed to result from collisions in a populat.ion of unseen planetesimals. Aims. We aim to study the dust properties in the belt in great details, and to constrain the gas-to-dust ratio. Methods. We obtained far-IR photometric observations of HD 181327 with the PACS instrument onboard the Herschel Space Observatory, complemented by new 3.2 nun observations carried with the ATCA array. The geometry of the belt is constrained with newly reduced HST /NICMOS scattered light images that break the degeneracy between the disk geometry and the dust properties. We then use the radiative transfer code GRaTer to compute a large grid of dust models, and we apply a Bayesian inference method to identify the grain models that best reproduce the SED. We attempt to detect the oxygen and ionized carbon fine-structure lines with Herschel/PACS spectroscopy, providing observables to our photochemical code ProDiMo. Results. The HST observations confirm that the dust is confined in a narrow belt. The continuum is detected with Herschel/PACS completing nicely the SED in the far-infrared. The disk is marginally resolved with both PACS and ATCA. A medium integration of the gas spectral lines only provides upper limits on the [OI] and [CII] line fluxes. We show that the HD 181327 dust disk consists of micron-sized grains of porous amorphous silicates and carbonaceous material surrounded by an import.ant layer of ice for a total dust mass of approx 0.05 stellar Mass. We discuss evidences that the grains consists of fluffy aggregates. The upper limits on the gas atomic lines do not provide unambiguous constraints: only if the PAH abundance is high, the gas mass must be lower than approx 17 Stellar Mass Conclusions. Despite the weak constraints on the gas disk, the age of HD 181327 and the properties of the dust disk suggest that it has passed the stage of gaseous planets formation. The dust reveals a population of icy planetesimals, similar to the primitive Edgeworth-Kuiper Belt, that may be a source for the future delivery of water and volatiles onto forming terrestrial planets.
    Keywords: Astronomy
    Type: GSFC.JA.5863.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...