ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-02-22
    Description: Both genome-wide genetic and epigenetic alterations are fundamentally important for the development of cancers, but the interdependence of these aberrations is poorly understood. Glioblastomas and other cancers with the CpG island methylator phenotype (CIMP) constitute a subset of tumours with extensive epigenomic aberrations and a distinct biology. Glioma CIMP (G-CIMP) is a powerful determinant of tumour pathogenicity, but the molecular basis of G-CIMP remains unresolved. Here we show that mutation of a single gene, isocitrate dehydrogenase 1 (IDH1), establishes G-CIMP by remodelling the methylome. This remodelling results in reorganization of the methylome and transcriptome. Examination of the epigenome of a large set of intermediate-grade gliomas demonstrates a distinct G-CIMP phenotype that is highly dependent on the presence of IDH mutation. Introduction of mutant IDH1 into primary human astrocytes alters specific histone marks, induces extensive DNA hypermethylation, and reshapes the methylome in a fashion that mirrors the changes observed in G-CIMP-positive lower-grade gliomas. Furthermore, the epigenomic alterations resulting from mutant IDH1 activate key gene expression programs, characterize G-CIMP-positive proneural glioblastomas but not other glioblastomas, and are predictive of improved survival. Our findings demonstrate that IDH mutation is the molecular basis of CIMP in gliomas, provide a framework for understanding oncogenesis in these gliomas, and highlight the interplay between genomic and epigenomic changes in human cancers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3351699/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3351699/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Turcan, Sevin -- Rohle, Daniel -- Goenka, Anuj -- Walsh, Logan A -- Fang, Fang -- Yilmaz, Emrullah -- Campos, Carl -- Fabius, Armida W M -- Lu, Chao -- Ward, Patrick S -- Thompson, Craig B -- Kaufman, Andrew -- Guryanova, Olga -- Levine, Ross -- Heguy, Adriana -- Viale, Agnes -- Morris, Luc G T -- Huse, Jason T -- Mellinghoff, Ingo K -- Chan, Timothy A -- R01 CA154767/CA/NCI NIH HHS/ -- R01CA154767-01/CA/NCI NIH HHS/ -- U54 CA143798/CA/NCI NIH HHS/ -- U54-CA143798/CA/NCI NIH HHS/ -- England -- Nature. 2012 Feb 15;483(7390):479-83. doi: 10.1038/nature10866.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22343889" target="_blank"〉PubMed〈/a〉
    Keywords: Astrocytes/cytology/metabolism ; Cell Survival/genetics ; Cells, Cultured ; CpG Islands/genetics ; DNA Methylation/*genetics ; Epigenesis, Genetic ; Epigenomics ; Gene Expression Regulation ; Glioblastoma/genetics/pathology ; Glioma/*genetics/pathology ; HEK293 Cells ; Histones/metabolism ; Humans ; Isocitrate Dehydrogenase/*genetics/metabolism ; Metabolome/genetics ; Mutation/*genetics ; *Phenotype ; Tumor Cells, Cultured
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...