ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of geodesy 71 (1997), S. 344-350 
    ISSN: 1432-1394
    Keywords: Key words. Tides ; Arctic Ocean tides ; Earth rotation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying
    Notes: Abstract. Oceanic tidal angular momentum (OTAM) is calculated for the four major tides of the Arctic Ocean, based on the tidal elevations and current velocities from a recent two-dimensional numerical hydrodynamic model. The presented OTAM tables are meant to be complementary to other modeling studies that use satellite altimetry (which cannot observe Arctic Ocean tides because of ice cover and limited satellite inclinations). Although the Arctic Ocean's influence on earth rotation is, as may be expected, relatively small, the rapid advancement of the subject now calls for such small contributions to be explicitly accounted for.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C08017, doi:10.1029/2008JC004941.
    Description: A spherical coordinate version of the unstructured grid 3-D FVCOM (finite volume coastal ocean model) has been applied to the Arctic Ocean to simulate tides with a horizontal resolution ranging from 1 km in the near-coastal areas to 15 km in the deep ocean. By accurately resolving the irregular coastlines and bathymetry in the Arctic Ocean coastal regions, this model reproduces the diurnal (K1 and O1) and semidiurnal (M2 and S2) tidal wave dynamics and captures the complex tidal structure along the coast, particularly in the narrow straits of the Canadian Archipelago. The simulated tidal parameters (harmonic constituents of sea surface elevation and currents) agree well with the available observational data. High-resolution meshes over the continental shelf and slope capture the detailed spatial structure of topographic trapped shelf waves, which are quite energetic along the Greenland, Siberia, and Spitsbergen continental slope and shelf break areas. Water stratification influences the vertical distribution of tidal currents but not the water transport and thus tidal elevation. The comparison with previous finite difference models suggests that horizontal resolution and geometric fitting are two prerequisites to simulate realistically the tidal energy flux in the Arctic Ocean, particularly in the Canadian Archipelago.
    Description: This research was supported by the NSF Office of Polar Programs through grants OPP ARC-0712903, ARC- 0732084, and ARC-0804029 for C. Chen, G. Gao, and G. Cowles; OPP ARC-0804010 and ARC-0712848 for A. Proshutinsky; OPP ANT-0523223, ARC0712848, NOAA Cooperative Agreement NA17RJ1223 (409) and the WHOI Smith Chair for R. C. Beardsley. J. Qi was supported by the SMAST fishery program under NOAA grants NA04NMF4720332 and NA05NMF4721131. The spherical coordinate version of FVCOM was developed with initial funds from NSF grants OCE-0606928 and OCE- 0726851. Gao was also supported by the Chinese NSF Arctic Ocean grant under contract 40476007.
    Keywords: FVCOM ; Arctic Ocean tides ; Intermodel comparisons
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: image/tiff
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...