ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 11 (1990), S. 211-226 
    ISSN: 1573-0662
    Keywords: Lower troposphere ; aerosols ; Arctic ; air pollution ; principal component analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Six years of observations (1980 to 1986) of the composition of lower tropospheric aerosols at Alert on northern Ellesmere Island in the Canadian high Arctic yield insight into the seasonal variation of Arctic air pollutants as well as of substances of natural origin. A principal component analysis of 138 observations of 21 aerosol constituents (major ions, metals, nonmetallic trace elements) for the most polluted period of December to April identified not only a soil, sea salt and anthropogenic aerosol component, but also one associated with photochemical reactions in the atmosphere that occur at polar sunrise. Depending on the source of their gaseous precursors, elements in the photochemical component can be natural or anthropogenic in origin. For instance, SO4 2-, existing mostly as H2SO4, originates probably from both anthropogenic and natural sources while Br− is likely of marine origin. In contrast, SO4 2- in the anthropogenic component has the stoichiometry of NH4HSO4. In the winter months, over 90% of Arctic SO4 2- is in the anthropogenic and photochemical components. In winter, a substantial portion (11 to 35%) of Na+ is associated with the anthropogenic aerosol component suggesting either that marine aerosols have been physically or chemically modified by interactions with air pollution or that there are anthropogenic sources of Na+. The aerosol soil component is controlled by both local and distant dust sources. During a year, it has two peaks at Alert, one in April/May coinciding with the Asian dust storm season and one in September. There is a marked difference in the seasonal variation of particulate Br− and iodine concentrations in the air. Both have a peak in April/May associated with polar sunrise and, hence, photochemical reactions in the atmosphere. However, iodine also peaks in early fall. This may be a product of biogenic iodine emissions to the atmosphere during secondary blooms in northern oceans in late summer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0662
    Keywords: Br2 ; HOBr ; BrOx ; Arctic ; ozone depletion ; troposphere
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract As part of the Polar Sunrise Experiment (PSE) 1997, concentrations of halogen species thought to be involved in ground level Arctic ozone depletion were made at Alert, NWT, Canada (82.5°N, 62.3°W) during the months of March and April, 1997. Measurements were made of photolyzable chlorine (Cl2 and HOCl) and bromine (Br2 and HOBr) using the Photoactive Halogen Detector (PHD), and bromine radicals (BrOx) using a modified radical amplifier. During the sampling period between Julian Day 86 (March 27) and Day 102 (April 12), two ozone depletion episodes occurred, the most notable being on days 96-99, when ozone levels were below detectable limits (≈1 ppbv). Concentrations of BrOx above the 4 pptv detection limit were found for a significant part of the study, both during and outside of depletion events. The highest BrOx concentrations were observed at the end of the depletion event, when the concentration reached 15 pptv. We found substantial amounts of Br2 in the absence of O3, indicating that O3 is not a necessary requirement for production of Br2. There is also Br2 present when winds are from the south, implying local scale (e.g. from the snowpack) production. During the principal O3 depletion event, the HOBr concentration rose to ≈260 pptv, coincident with the BrOx maximum. This implies a steady state HO2 concentration of 6 pptv. During a partial O3 depletion event, we estimate that the flux of Br2 from the surface is about 10 times greater than that for Cl2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...