ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Arabidopsis thaliana  (3)
  • Hymenoptera  (2)
  • Springer  (5)
  • American Geophysical Union (AGU)
Collection
Publisher
  • Springer  (5)
  • American Geophysical Union (AGU)
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant growth regulation 14 (1994), S. 7-14 
    ISSN: 1573-5087
    Keywords: Arabidopsis thaliana ; IBA biosynthesis ; indole-3-acetic acid ; indole-3-butyric acid ; α-naphthylacetic acid ; phenylacetic acid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Indole-3-butyric acid (IBA) was identified by HPLC and GC-MS as one of the reaction products after incubation of sterile cultures of Arabidopsis thaliana seedlings with labeled indole-3-acetic acid (IAA). This is the first demonstration of IBA biosynthesis in a dicotyledonous plant. After 1 h of incubation most of the IBA was found in the free form, while after longer periods of incubation most of it was detected in conjugated forms. Formation of IBA conjugates was inhibited by the addition of unlabeled IBA. The biosynthesis of IBA and its conjugates was followed throughout the development of the seedlings and at different pH values. All parts of the plant (isolated roots, leaves, shoots and flowers) were able to convert IAA to IBA to the same extent. IAA was more readily transported than IBA in mature Arabidopsis plants. Feeding of labeled phenylacetic acid (PAA) and α-naphthylacetic acid (NAA) to Arabidopsis seedlings resulted in a new small peak which was hydrolyzed by 7N NaOH, but the formation of compounds with longer side chains (analogous to IBA) could not be detected.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant growth regulation 13 (1993), S. 189-195 
    ISSN: 1573-5087
    Keywords: Arabidopsis thaliana ; autofluorography ; auxin conjugates ; IBA-glucose synthase ; indole-3-butyric acid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Indole-3-butyric acid (IBA) was metabolized by seedlings of Arabidopsis thaliana cultivated in liquid medium under sterile conditions to two major metabolites. One metabolite was hydrolyzed by 1 N NaOH and β-glucosidase and was tentatively identified as IBA-glucose and the other was hydrolyzed by 7 N NaOH and amidase and was identified as an amide-linked conjugate. IBA-glucose synthase activity was found in a soluble enzyme fraction after incubation of 3H-IBA, IBA and UDP-glucose. The labelled reaction product had an Rf value comparable to IBA glucose and stained positive with Ehmann reagent.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Plant growth regulation 13 (1993), S. 179-187 
    ISSN: 1573-5087
    Keywords: Arabidopsis thaliana ; auxin conjugates ; ethylene ; indole-3-acetic acid ; indole-3-butyric acid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Indole-3-butyric acid (IBA) was identified by HPLC and GC-MS as an endogenous compound in plantlets of the crucifer Arabidopsis thaliana (L.) Heynh. A. thaliana was cultivated under sterile conditions as shaking culture in different liquid media with and without supply of hormones. Free and total IBA and indole-3-acetic acid (IAA) were determined at different stages of development during the culture period as well as in culture media of different initial pH values. The results showed that IAA was present in higher concentrations than IBA, but both hormones seemed to show the same behaviour under the different experimental conditions. Differences were found in the mode of conjugation of the two hormones. While IAA was mostly conjugated via amide bonds, the main IBA conjugates were ester bound. The ethylene concentration derived from the seedlings, when they were grown in flasks of different size, seemed not to influence the auxin content in the same cultures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of chemical ecology 16 (1990), S. 1791-1816 
    ISSN: 1573-1561
    Keywords: Ant ; ant garden ; Hymenoptera ; Formicidae ; Camponotus ; chemical mimicry ; citronellol ; convergent evolution ; epiphyte ; mellein ; methyl 6-methylsalicylate ; Perú ; seed dispersal ; symbiosis ; tropical forest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract In ant gardens of lowland Amazonia, parabiotic ant speciesCamponotus femoratus andCrematogaster cf.limata parabiotica cultivate a taxonomically diverse group of epiphytic plants, whose establishment is restricted to arboreal carton ant nests. Epiphyte seeds are collected by workers ofCa. femoratus, the larger of the two ants, and stored unharmed in brood chambers where they subsequently germinate. Although seeds of some ant-garden epiphytes bear nutritional rewards, previous studies have shown that these rewards are not sufficient to explain the pattern of ant attraction to seeds. Five aromatic compounds occur frequently in and on the seeds of most ant-garden epiphytes and may be chemical cues by which ants recognize propagules of their symbiotic plants. The most widely distributed of these is methyl 6-methylsalicylate [6-MMS]1, previously reported as a major mandibular gland product in relatedCamponotus species and present in trace quantities inCa. femoratus males. (−)-Citronellol6 (previously unreported inCamponotus) was the principal volatile constituent in extracts of male heads, and (−)-mellein7 was present in small quantities. Discovery of 6-MMS inside the mandibular glands of maleCa. femoratus (and its presence in analogous glands of related ants) offers preliminary support for Ule's (1906) hypothesis that seeds attract ants by mimicking ant brood. In addition, the likely fungistatic activity of seed compounds suggests that they could retard microbial pathogens of ants and plants in the organic detritus of nest gardens. While the presence of identical seed compounds in so many unrelated plant lineages might represent a remarkable case of convergent evolution, other interpretations are possible.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of chemical ecology 16 (1990), S. 2993-3013 
    ISSN: 1573-1561
    Keywords: Ant ; ant-garden ; benzothiazole ; Camponotus ; Hymenoptera ; Formicidae ; chemical mimicry ; epiphyte ; 2-hydroxy-3-methoxybenzene-methanol ; 1-(2-hydroxy-4-methoxyphenyl)ethanone ; 2-hydroxy-6-methyl-benzoic acid ; methyl ester ; 1-(2-hydroxy-6-methylphenyl)ethanone ; 1-(2,4-dihydroxyphenyl)ethanone ; limonene ; 6-methyl-methylsalicylate ; 6-MMS ; seed dispersal ; symbiosis ; tropical forests ; vanillin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract A number of volatile compounds occur on the seeds of taxonomically unrelated ant-garden epiphytes in western Amazonia. In field trials in southeastern Peru, we assayed the responses of ant-garden ants (Camponotus femoratus) to these and structurally similar compounds applied to artificial “seeds” made from zeolite molecular sieves. Benzothiazole,2, present on seeds of eight ant-garden epiphytes, repelled ants over the range of concentrations tested, as did 1-(2-hydroxy-6-methylphenyl)ethanone,3, occurring on seeds of six ant-garden epiphytes. 2-Hydroxy-6-methylbenzoic acid, methyl ester (methyl-6-methylsalicylate, 6-MMS),1, found on seeds of at least nine ant-garden epiphytes, was mildly repellent at high concentration, but stimulated excitement, seed handling, and (rarely) seed carrying at lower concentrations. Vanillin,5, a seed compound of four ant-garden epiphytes, and limonene,6, a monoterpene from seeds of three ant-garden epiphytes, both stimulated excitement, alarm, seed handling, and (rarely) seed carrying. Identified from seeds of seven ant-garden epiphytes, 1-(2,4-dihydroxyphenyl)ethanone,4, elicited little or no response. Among 70 compounds tested (mainly aromatic compounds), those found on seeds of ant-garden epiphytes or having structural features in common with such compounds were the most attractive to the ants. Although not present on epiphyte seeds, 2-hydroxy-3-methoxybenzenemethanol,10, consistently stimulated seed transport to the nest in one year, but did so only rarely in subsequent years. Some of the volatile compounds on seeds of ant-garden epiphytes probably play a role in ant attraction to epiphyte seeds, but evidence remains ambiguous. Finally,Ca. femoratus responded to one test compound [1-(2-hydroxy-4-methoxyphenyl)ethanone,60] (absent from epiphyte seeds) by descending from the vegetation to the ground.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...