ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-06-01
    Description: Nucleosomes compact and regulate access to DNA in the nucleus, and are composed of approximately 147 bases of DNA wrapped around a histone octamer. Here we report a genome-wide nucleosome positioning analysis of Arabidopsis thaliana using massively parallel sequencing of mononucleosomes. By combining this data with profiles of DNA methylation at single base resolution, we identified 10-base periodicities in the DNA methylation status of nucleosome-bound DNA and found that nucleosomal DNA was more highly methylated than flanking DNA. These results indicate that nucleosome positioning influences DNA methylation patterning throughout the genome and that DNA methyltransferases preferentially target nucleosome-bound DNA. We also observed similar trends in human nucleosomal DNA, indicating that the relationships between nucleosomes and DNA methyltransferases are conserved. Finally, as has been observed in animals, nucleosomes were highly enriched on exons, and preferentially positioned at intron-exon and exon-intron boundaries. RNA polymerase II (Pol II) was also enriched on exons relative to introns, consistent with the hypothesis that nucleosome positioning regulates Pol II processivity. DNA methylation is also enriched on exons, consistent with the targeting of DNA methylation to nucleosomes, and suggesting a role for DNA methylation in exon definition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964354/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964354/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chodavarapu, Ramakrishna K -- Feng, Suhua -- Bernatavichute, Yana V -- Chen, Pao-Yang -- Stroud, Hume -- Yu, Yanchun -- Hetzel, Jonathan A -- Kuo, Frank -- Kim, Jin -- Cokus, Shawn J -- Casero, David -- Bernal, Maria -- Huijser, Peter -- Clark, Amander T -- Kramer, Ute -- Merchant, Sabeeha S -- Zhang, Xiaoyu -- Jacobsen, Steven E -- Pellegrini, Matteo -- GM07104/GM/NIGMS NIH HHS/ -- GM42143/GM/NIGMS NIH HHS/ -- GM60398/GM/NIGMS NIH HHS/ -- R37 GM042143/GM/NIGMS NIH HHS/ -- R37 GM060398/GM/NIGMS NIH HHS/ -- R37 GM060398-10/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jul 15;466(7304):388-92. doi: 10.1038/nature09147. Epub 2010 May 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20512117" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/enzymology/*genetics/*metabolism ; Chromatin Assembly and Disassembly/genetics/*physiology ; Chromatin Immunoprecipitation ; DNA Methylation/genetics/*physiology ; DNA Polymerase II/analysis/metabolism ; DNA, Plant/genetics/metabolism ; Exons/genetics ; Genes, Plant/genetics ; Genome, Plant/genetics ; Humans ; Micrococcal Nuclease/metabolism ; Nucleosomes/genetics/*metabolism ; Sequence Analysis, DNA
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-05-05
    Description: Transposable elements (TEs) and DNA repeats are commonly targeted by DNA and histone methylation to achieve epigenetic gene silencing. We isolated mutations in two Arabidopsis genes, AtMORC1 and AtMORC6, which cause derepression of DNA-methylated genes and TEs but no losses of DNA or histone methylation. AtMORC1 and AtMORC6 are members of the conserved Microrchidia (MORC) adenosine triphosphatase (ATPase) family, which are predicted to catalyze alterations in chromosome superstructure. The atmorc1 and atmorc6 mutants show decondensation of pericentromeric heterochromatin, increased interaction of pericentromeric regions with the rest of the genome, and transcriptional defects that are largely restricted to loci residing in pericentromeric regions. Knockdown of the single MORC homolog in Caenorhabditis elegans also impairs transgene silencing. We propose that the MORC ATPases are conserved regulators of gene silencing in eukaryotes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376212/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376212/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moissiard, Guillaume -- Cokus, Shawn J -- Cary, Joshua -- Feng, Suhua -- Billi, Allison C -- Stroud, Hume -- Husmann, Dylan -- Zhan, Ye -- Lajoie, Bryan R -- McCord, Rachel Patton -- Hale, Christopher J -- Feng, Wei -- Michaels, Scott D -- Frand, Alison R -- Pellegrini, Matteo -- Dekker, Job -- Kim, John K -- Jacobsen, Steven E -- F32 GM100617/GM/NIGMS NIH HHS/ -- F32GM100617/GM/NIGMS NIH HHS/ -- GM007185/GM/NIGMS NIH HHS/ -- GM075060/GM/NIGMS NIH HHS/ -- GM088565/GM/NIGMS NIH HHS/ -- GM60398/GM/NIGMS NIH HHS/ -- HG003143/HG/NHGRI NIH HHS/ -- R01 GM075060/GM/NIGMS NIH HHS/ -- R01 GM088565/GM/NIGMS NIH HHS/ -- R01 HG003143/HG/NHGRI NIH HHS/ -- R37 GM060398/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Jun 15;336(6087):1448-51. doi: 10.1126/science.1221472. Epub 2012 May 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Terasaki Life Sciences Building, 610 Charles Young Drive East, Los Angeles, CA 90095-723905, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22555433" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/chemistry/genetics/*metabolism ; Animals ; Arabidopsis/enzymology/*genetics/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Caenorhabditis elegans ; Caenorhabditis elegans Proteins/genetics/metabolism ; Centromere ; DNA Methylation ; DNA Transposable Elements ; *Gene Silencing ; Genes, Plant ; Heterochromatin/*metabolism/ultrastructure ; Histones/metabolism ; Methylation ; Mutation ; RNA, Small Interfering/metabolism ; Transcription, Genetic ; Transgenes ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...