ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: While the upper crustal structure of the Southern Apennines is known, lack of control on the deep structure allows competing thin-skinned and thick-skinned models of the orogen. In thin-skinned models, the detachment decouples a stack of rootless nappes from the basement. In thick-skinned models, basement is involved in the most recent phase of thrusting. To examine crustal structure, we use teleseismic data from the Calabria-Apennine-Tyrrhenian/Subduction- Accretion-Collision Network (CAT/SCAN) array in southern Italy. We use receiver functions (RF) processed into a common conversion point stack to generate images of the crust. Inter- pretation and correlation to geological structure are done using inversions of individual station RFs. We focus on a shallow discontinuity where P-to-S conversions occur. In the foreland, it corresponds to velocity jumps between carbonate and clastic strata with basement. A similar interpretation for the Apennines provides the most parsimonious explanation and supports a thick-skinned interpretation. In a thick-skinned reconstruction, the amount of shortening is much smaller than for a thin-skinned model. This implies considerably less Pliocene–Pleistocene shortening across the Apennines and suggests an east-southeast motion of the Calabrian arc subparallel to the southern Apennines rather than a radial expansion of the arc.
    Description: Published
    Description: 155-158
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: thrust tectonics ; Apennines ; continental collision ; seismology ; receiver functions ; structural geology ; 01. Atmosphere::01.03. Magnetosphere::01.03.04. Structure and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: While the upper structure of the Southern Apennines is known, lack of control on the deep structure allows competing thin-skin and tick-skin models of the orogen. In thin-skin models the detachment decouples a stack of rootless nappes from the basement. In the tick-skin models, besement is involved in the most recent phase of thrusting. To examine crustal structure, we use teleseismic data from the CAT/SCAN array in southern Italy. We use receiver functions (RF) processed into a Common Conversion Point (CCP) stack to generate images of the crust. Interpretation and correlation to geological structure is done using inversions of individual station RFs. We focus on a shallow discontinuity where P-to-S conversions occur. In the foreland, it corresponds to velocity jumps between carbonate and clastic strata with basement. A similar interpretation for the Apennines provides the most parsimonious explanation and supports a tick-skin interpretation. In a thick-skin reconstruction, the amount of shortening is much smaller than for a thin-skin model. This implies considerably less Plio-Pleistocene shortening across the Apennines and suggests an E-SE motion of the Calabrian Arc subparallel to the southern Apennines rather than a radial expansion of the Arc.
    Description: In press
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: receiver functions ; Apennines ; thrust tectonics ; structural geology ; 01. Atmosphere::01.03. Magnetosphere::01.03.04. Structure and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Here we describe the horizontal velocities of continuous GPS stations in the Calabrian Arc (CA) and surrounding regions. The appropriate reference frame to evaluate the crustal motion of the CA is considered by assessing the internal deformation and the relative motion of the crustal blocks in the foreland of the Apennines␣Ionian␣Maghrebides subduction system. We propose that the motion of CA rela- tive to the subducting Ionian lower plate is most properly assessed by minimizing the GPS velocities in Apulia. In this reference frame the significant ␣2 mm/yr southeast- ward motion of the stations on the Ionian flank of the CA shows that the arc is still moving towards the trench in agreement with the observations of active shortening in the Ioanian wedge. This southeastward migration is associated to 1.4 ± 0.3 mm/yr E␣W extension of the forearc in northern Calabria, comparable with the seismic strain averaged in the last 500 years. The limited subaerial exposure decreases the resolution on locking of the subduction interface but the distribution and direction of crustal extension along the CA impose important constraints on geodynamic interpreta- tions of the area.
    Description: Published
    Description: L17304
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Calabrian Arc ; GPS ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-10-19
    Description: The Calabrian Arc is the final remnant of a Western Mediterranean microplate driven by rollback. The Calabrian-Apennine-Tyrrhenian/Subduction-Collision-Accretion Seismic Network (CAT/SCAN) was a passive seismic experiment to study of the Calabrian Arc and its transition to the southern Apennines. The follow up Calabrian Arc project added a multidisciplinary (seismology, geology, geomorphology, geochronology, GPS, etc.) approach to better understand the tectonics of southern Italy imaged by the CAT/SCAN experiment. Here we focus on the seismological results of the two projects. The CAT/SCAN land deployment consisted of three phases. The initial phase included an array of 39 broadband seismometers onshore, deployed during the winter of 2003/4. In September 2004, the array was reduced and in April 2005, the array was reduced once again. The field deployment was completed in October 2005. Offshore, 12 broadband Ocean Bottom Seismometers (OBSs) were deployed in the beginning of October 2004. However, only 1 was recovered normally while several others were recovered after being disturbed by trawling. The experiment goal was to determine the structure of the Calabrian subduction and southern Apennine collision systems and the structure of the transition from oceanic subduction in Calabria to continental collision in the southern Apennines.
    Description: Published
    Description: 792
    Description: 2T. Tettonica attiva
    Description: N/A or not JCR
    Description: restricted
    Keywords: Calabrian Arc ; CAT/SCAN network ; Local seismicity ; Receiver function ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...