ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Shear structure/flows  (2)
  • Anthropogenic impact  (1)
  • 2015-2019  (3)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2773–2789, doi:10.1175/JPO-D-15-0031.1.
    Description: Tidal oscillatory salt transport, induced by the correlation between tidal variations in salinity and velocity, is an important term for the subtidal salt balance under the commonly used Eulerian method of salt transport decomposition. In this paper, its mechanisms in a partially stratified estuary are investigated with a numerical model of the Hudson estuary. During neap tides, when the estuary is strongly stratified, the tidal oscillatory salt transport is mainly due to the hydraulic response of the halocline to the longitudinal variation of topography. This mechanism does not involve vertical mixing, so it should not be regarded as oscillatory shear dispersion, but instead it should be regarded as advective transport of salt, which results from the vertical distortion of exchange flow obtained in the Eulerian decomposition by vertical fluctuations of the halocline. During spring tides, the estuary is weakly stratified, and vertical mixing plays a significant role in the tidal variation of salinity. In the spring tide regime, the tidal oscillatory salt transport is mainly due to oscillatory shear dispersion. In addition, the transient lateral circulation near large channel curvature causes the transverse tilt of the halocline. This mechanism has little effect on the cross-sectionally integrated tidal oscillatory salt transport, but it results in an apparent left–right cross-channel asymmetry of tidal oscillatory salt transport. With the isohaline framework, tidal oscillatory salt transport can be regarded as a part of the net estuarine salt transport, and the Lagrangian advective mechanism and dispersive mechanism can be distinguished.
    Description: Tao Wang was supported by the Open Research Fund of State Key Laboratory of Estuarine and Coastal Research (Grant SKLEC-KF201509) and Chinese Scholarship Council. Geyer was supported by by NSF Grant OCE 0926427. Wensheng Jiang was supported by NSFC-Shandong Joint Fund for Marine Science Research Centers (Grant U1406401).
    Description: 2016-05-01
    Keywords: Geographic location/entity ; Estuaries ; Circulation/ Dynamics ; Baroclinic flows ; Dispersion ; Shear structure/flows ; Atm/Ocean Structure/ Phenomena ; Diapycnal mixing ; Models and modeling ; Regional models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 1769-1783, doi:10.1175/JPO-D-15-0193.1.
    Description: High-resolution observations of velocity, salinity, and turbulence quantities were collected in a salt wedge estuary to quantify the efficiency of stratified mixing in a high-energy environment. During the ebb tide, a midwater column layer of strong shear and stratification developed, exhibiting near-critical gradient Richardson numbers and turbulent kinetic energy (TKE) dissipation rates greater than 10−4 m2 s−3, based on inertial subrange spectra. Collocated estimates of scalar variance dissipation from microconductivity sensors were used to estimate buoyancy flux and the flux Richardson number Rif. The majority of the samples were outside the boundary layer, based on the ratio of Ozmidov and boundary length scales, and had a mean Rif = 0.23 ± 0.01 (dissipation flux coefficient Γ = 0.30 ± 0.02) and a median gradient Richardson number Rig = 0.25. The boundary-influenced subset of the data had decreased efficiency, with Rif = 0.17 ± 0.02 (Γ = 0.20 ± 0.03) and median Rig = 0.16. The relationship between Rif and Rig was consistent with a turbulent Prandtl number of 1. Acoustic backscatter imagery revealed coherent braids in the mixing layer during the early ebb and a transition to more homogeneous turbulence in the midebb. A temporal trend in efficiency was also visible, with higher efficiency in the early ebb and lower efficiency in the late ebb when the bottom boundary layer had greater influence on the flow. These findings show that mixing efficiency of turbulence in a continuously forced, energetic, free shear layer can be significantly greater than the broadly cited upper bound from Osborn of 0.15–0.17.
    Description: Holleman was supported by the Devonshire Scholars program. The field study and the coauthors’ contributions were supported by NSF Grant OCE 0926427.
    Description: 2016-11-24
    Keywords: Circulation/ Dynamics ; Mixing ; Shear structure/flows ; Turbulence ; Observational techniques and algorithms ; Ship observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Wave generation, dissipation, and disequilibrium in an embayment with complex bathymetry. Journal of Geophysical Research-Oceans, 123(11), (2018): 7856-7876, doi:10.1029/2018JC014381.
    Description: Heterogeneous, sharply varying bathymetry is common in estuaries and embayments, and complex interactions between the bathymetry and wave processes fundamentally alter the distribution of wave energy. The mechanisms that control the generation and dissipation of wind waves in an embayment with heterogeneous, sharply varying bathymetry are evaluated with an observational and numerical study of the Delaware Estuary. Waves in the lower bay depend on both local wind forcing and remote wave forcing from offshore, but elsewhere in the estuary waves are controlled by the local winds and the response of the wavefield to bathymetric variability. Differences in the wavefield with wind direction highlight the impacts of heterogeneous bathymetry and limited fetch. Under the typical winter northwest wind conditions waves are fetch‐limited in the middle estuary and reach equilibrium with local water depth only in the lower bay. During southerly wind conditions typical of storms, wave energy is near equilibrium in the lower bay, and midestuary waves are attenuated by the combination of whitecapping and bottom friction, particularly over the steep, longitudinal shoals. Although the energy dissipation due to bottom friction is generally small relative to whitecapping, it becomes significant where the waves shoal abruptly due to steep bottom topography. In contrast, directional spreading keeps wave heights in the main channel significantly less than local equilibrium. The wave disequilibrium in the deep navigational channel explains why the marked increase in depth by dredging of the modern channel has had little impact on wave conditions.
    Description: Funding was provided by National Science Foundation Coastal SEES: Toward Sustainable Urban Estuaries in the Anthropocene (OCE 1325136) and Ministry of Science and Technology (MOST 107‐2611‐M‐006‐004). We thank James Kirby, Fengyan Shi, and the two anonymous reviewers for their careful reading of our manuscript and their insightful comments. We thank Tracy Quirk for providing wave measurements in Bombay Hook, DE and Stow Creek, NJ. We thank Katie Pijanowski for compiling historical and modern bathymetric data for the estuary. Data supporting this study are posted to Zenodo (http://doi.org/10.5281/zenodo.1433055).
    Description: 2019-04-04
    Keywords: Estuarine hydrodynamics ; Wave energy ; Equilibrium wave ; Anthropogenic impact
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...