ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Berichte der deutschen chemischen Gesellschaft 1998 (1998), S. 1269-1281 
    ISSN: 1434-1948
    Keywords: Oxidation ; Catalysis ; Phthalocyanine ; Iron ; Anthracene ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Iron(III) tetrasulfophthalocyanine (FePcS) was shown to catalyze the oxidation of polycyclic aromatic hydrocarbons by H2O2. Benzo[a]pyrene and anthracene were converted to the corresponding quinones while biphenyl-2,2′-dicarboxylic acid was the main product of phenanthrene oxidation. The mechanism of the anthracene oxidation by H2O2 in the presence of FePcS or by KHSO5 with iron(III) meso-tetrakis(3,5-disulfonatomesityl)porphyrin (FeTMPS) (see Figure 1 for catalyst structures) has been investigated in details by using kinetic isotope effects (KIEs) and 18O labeling studies. KIEs measured on the substrate consumption in the competitive oxidation of [H10]anthracene and [D10]anthracene by FePcS/H2O2 and FeTMPS/KHSO5 were essentially the same, 0.75 ± 0.02 and 0.76 ± 0.06, respectively. These inverse KIEs on the first oxidation step can be explained by the sp2-to-sp3 hybridization change during the addition of an electrophilic oxoiron complex to the sp2 carbon center of anthracene to form a σ adduct (this inverse KIE being enhanced by stronger stacking interactions between the perdeuterated substrate with the macrocyclic catalyst). Although the first oxidation step seems to be the same, different distribution of the oxidation products of anthracene and very different 18O incorporation into anthrone and anthraquinone in catalytic oxidations performed in the presence of H218O suggested that different active species should be responsible for anthracene oxidation in both catalytic systems. All the results obtained are compatible with an involvement of TMPSFeV=O (or TMPS+FeIV=O), having two redox equivalents above the iron(III) state of the metalloporphyrin precursor, while PcSFeIV=O (one redox equivalent above FeIII state of FePcS) was proposed to be the active species in the metallophthalocyanine-based system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...