ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Antarctica, west; DEPTH, ice/snow; ICEDRILL; Ice drill; WAIS_divide; δ18O, water  (1)
Collection
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Steig, Eric J; Ding, Quinghua; White, James W C; Küttel, Meinrad; Rupper, Summer B; Neumann, T A; Neff, Peter D; Gallant, Ailie J E; Mayewski, Paul Andrew; Taylor, Kendrick C; Hoffmann, Georg; Dixon, Daniel A; Schoenemann, Spruce W; Markle, Bradley R; Fudge, Tyler J; Schneider, David P; Schauer, Andrew J; Teel, Rebecca P; Vaughn, Bruce H; Burgener, Landon; Williams, Jessica; Korotkikh, Elena (2013): Recent climate and ice-sheet changes in West Antarctica compared with the past 2,000 years. Nature Geoscience, 6(5), 372-375, https://doi.org/10.1038/NGEO1778
    Publication Date: 2024-03-18
    Description: Changes in atmospheric circulation over the past five decades have enhanced the wind-driven inflow of warm ocean water onto the Antarctic continental shelf, where it melts ice shelves from below. Atmospheric circulation changes have also caused rapid warming over the West Antarctic Ice Sheet, and contributed to declining sea-ice cover in the adjacent Amundsen-Bellingshausen seas. It is unknown whether these changes are part of a longer-term trend. Here, we use water-isotope (d18O) data from an array of ice-core records to place recent West Antarctic climate changes in the context of the past two millennia. We find that the d18O of West Antarctic precipitation has increased significantly in the past 50 years, in parallel with the trend in temperature, and was probably more elevated during the 1990s than at any other time during the past 200 years. However, d18O anomalies comparable to those of recent decades occur about 1% of the time over the past 2,000 years. General circulation model simulations suggest that recent trends in d18O and climate in West Antarctica cannot be distinguished from decadal variability that originates in the tropics. We conclude that the uncertain trajectory of tropical climate variability represents a significant source of uncertainty in projections of West Antarctic climate and ice-sheet change.
    Keywords: Antarctica, west; DEPTH, ice/snow; ICEDRILL; Ice drill; WAIS_divide; δ18O, water
    Type: Dataset
    Format: text/tab-separated-values, 601 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...