ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-13
    Description: Atlantic cod (Gadus morhua) is a large, cold-adapted teleost that sustains long-standing commercial fisheries and incipient aquaculture. Here we present the genome sequence of Atlantic cod, showing evidence for complex thermal adaptations in its haemoglobin gene cluster and an unusual immune architecture compared to other sequenced vertebrates. The genome assembly was obtained exclusively by 454 sequencing of shotgun and paired-end libraries, and automated annotation identified 22,154 genes. The major histocompatibility complex (MHC) II is a conserved feature of the adaptive immune system of jawed vertebrates, but we show that Atlantic cod has lost the genes for MHC II, CD4 and invariant chain (Ii) that are essential for the function of this pathway. Nevertheless, Atlantic cod is not exceptionally susceptible to disease under natural conditions. We find a highly expanded number of MHC I genes and a unique composition of its Toll-like receptor (TLR) families. This indicates how the Atlantic cod immune system has evolved compensatory mechanisms in both adaptive and innate immunity in the absence of MHC II. These observations affect fundamental assumptions about the evolution of the adaptive immune system and its components in vertebrates.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3537168/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3537168/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Star, Bastiaan -- Nederbragt, Alexander J -- Jentoft, Sissel -- Grimholt, Unni -- Malmstrom, Martin -- Gregers, Tone F -- Rounge, Trine B -- Paulsen, Jonas -- Solbakken, Monica H -- Sharma, Animesh -- Wetten, Ola F -- Lanzen, Anders -- Winer, Roger -- Knight, James -- Vogel, Jan-Hinnerk -- Aken, Bronwen -- Andersen, Oivind -- Lagesen, Karin -- Tooming-Klunderud, Ave -- Edvardsen, Rolf B -- Tina, Kirubakaran G -- Espelund, Mari -- Nepal, Chirag -- Previti, Christopher -- Karlsen, Bard Ove -- Moum, Truls -- Skage, Morten -- Berg, Paul R -- Gjoen, Tor -- Kuhl, Heiner -- Thorsen, Jim -- Malde, Ketil -- Reinhardt, Richard -- Du, Lei -- Johansen, Steinar D -- Searle, Steve -- Lien, Sigbjorn -- Nilsen, Frank -- Jonassen, Inge -- Omholt, Stig W -- Stenseth, Nils Chr -- Jakobsen, Kjetill S -- 098051/Wellcome Trust/United Kingdom -- England -- Nature. 2011 Aug 10;477(7363):207-10. doi: 10.1038/nature10342.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, PO Box 1066, Blindern, N-0316 Oslo, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21832995" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Evolution, Molecular ; Gadus morhua/*genetics/*immunology ; Genome/*genetics ; Genomics ; Hemoglobins/genetics ; Immune System/*immunology ; Immunity/*genetics/immunology ; Major Histocompatibility Complex/genetics/immunology ; Male ; Polymorphism, Genetic/genetics ; Synteny/genetics ; Toll-Like Receptors/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1980-10-01
    Description: When the germ line of Drosophila males is destabilized by a syndrome known as hybrid dysgenesis, X-chromosome rearrangements are found in up to 10 percent of the gametes produced. Some of these aberrations are simple inversions, but many are complex multibreak rearrangements. Furthermore, most of the breakpoints fall into a few highly localized positions on the chromosome. These positions are mostly at points of intercalary heterochromatin and may vary from one strain to the next. the results suggest that they may represent points of insertion of mobile DNA sequences.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berg, R -- Engels, W R -- Kreber, R A -- GM 07131/GM/NIGMS NIH HHS/ -- GM 22038/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1980 Oct;210(4468):427-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6776625" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosome Inversion ; Chromosome Mapping ; DNA/genetics ; Drosophila melanogaster/*genetics ; Female ; Male ; Meiosis ; Repetitive Sequences, Nucleic Acid ; *Sex Chromosomes ; Translocation, Genetic ; *X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...