ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-01-22
    Description: In the healthy adult brain synapses are continuously remodelled through a process of elimination and formation known as structural plasticity. Reduction in synapse number is a consistent early feature of neurodegenerative diseases, suggesting deficient compensatory mechanisms. Although much is known about toxic processes leading to synaptic dysfunction and loss in these disorders, how synaptic regeneration is affected is unknown. In hibernating mammals, cooling induces loss of synaptic contacts, which are reformed on rewarming, a form of structural plasticity. We have found that similar changes occur in artificially cooled laboratory rodents. Cooling and hibernation also induce a number of cold-shock proteins in the brain, including the RNA binding protein, RBM3 (ref. 6). The relationship of such proteins to structural plasticity is unknown. Here we show that synapse regeneration is impaired in mouse models of neurodegenerative disease, in association with the failure to induce RBM3. In both prion-infected and 5XFAD (Alzheimer-type) mice, the capacity to regenerate synapses after cooling declined in parallel with the loss of induction of RBM3. Enhanced expression of RBM3 in the hippocampus prevented this deficit and restored the capacity for synapse reassembly after cooling. RBM3 overexpression, achieved either by boosting endogenous levels through hypothermia before the loss of the RBM3 response or by lentiviral delivery, resulted in sustained synaptic protection in 5XFAD mice and throughout the course of prion disease, preventing behavioural deficits and neuronal loss and significantly prolonging survival. In contrast, knockdown of RBM3 exacerbated synapse loss in both models and accelerated disease and prevented the neuroprotective effects of cooling. Thus, deficient synapse regeneration, mediated at least in part by failure of the RBM3 stress response, contributes to synapse loss throughout the course of neurodegenerative disease. The data support enhancing cold-shock pathways as potential protective therapies in neurodegenerative disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338605/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338605/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peretti, Diego -- Bastide, Amandine -- Radford, Helois -- Verity, Nicholas -- Molloy, Colin -- Martin, Maria Guerra -- Moreno, Julie A -- Steinert, Joern R -- Smith, Tim -- Dinsdale, David -- Willis, Anne E -- Mallucci, Giovanna R -- MC_U132692719/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2015 Feb 12;518(7538):236-9. doi: 10.1038/nature14142. Epub 2015 Jan 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Toxicology Unit, Hodgkin Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK. ; 1] Medical Research Council Toxicology Unit, Hodgkin Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK [2] Department of Clinical Neurosciences, Clifford Allbutt Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25607368" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/metabolism ; Animals ; Cold Shock Proteins and Peptides/metabolism ; *Cold Temperature ; Cold-Shock Response/*physiology ; Disease Models, Animal ; Hibernation/physiology ; Hippocampus/metabolism ; Male ; Mice ; Neurodegenerative Diseases/*metabolism/*pathology ; *Neuronal Plasticity ; *Neuroprotective Agents ; Prions/physiology ; RNA-Binding Proteins/genetics/*metabolism ; Regeneration ; Synapses/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-05-25
    Description: The mechanisms leading to neuronal death in neurodegenerative disease are poorly understood. Many of these disorders, including Alzheimer's, Parkinson's and prion diseases, are associated with the accumulation of misfolded disease-specific proteins. The unfolded protein response is a protective cellular mechanism triggered by rising levels of misfolded proteins. One arm of this pathway results in the transient shutdown of protein translation, through phosphorylation of the alpha-subunit of eukaryotic translation initiation factor, eIF2. Activation of the unfolded protein response and/or increased eIF2alpha-P levels are seen in patients with Alzheimer's, Parkinson's and prion diseases, but how this links to neurodegeneration is unknown. Here we show that accumulation of prion protein during prion replication causes persistent translational repression of global protein synthesis by eIF2alpha-P, associated with synaptic failure and neuronal loss in prion-diseased mice. Further, we show that promoting translational recovery in hippocampi of prion-infected mice is neuroprotective. Overexpression of GADD34, a specific eIF2alpha-P phosphatase, as well as reduction of levels of prion protein by lentivirally mediated RNA interference, reduced eIF2alpha-P levels. As a result, both approaches restored vital translation rates during prion disease, rescuing synaptic deficits and neuronal loss, thereby significantly increasing survival. In contrast, salubrinal, an inhibitor of eIF2alpha-P dephosphorylation, increased eIF2alpha-P levels, exacerbating neurotoxicity and significantly reducing survival in prion-diseased mice. Given the prevalence of protein misfolding and activation of the unfolded protein response in several neurodegenerative diseases, our results suggest that manipulation of common pathways such as translational control, rather than disease-specific approaches, may lead to new therapies preventing synaptic failure and neuronal loss across the spectrum of these disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378208/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378208/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moreno, Julie A -- Radford, Helois -- Peretti, Diego -- Steinert, Joern R -- Verity, Nicholas -- Martin, Maria Guerra -- Halliday, Mark -- Morgan, Jason -- Dinsdale, David -- Ortori, Catherine A -- Barrett, David A -- Tsaytler, Pavel -- Bertolotti, Anne -- Willis, Anne E -- Bushell, Martin -- Mallucci, Giovanna R -- MC_U105185860/Medical Research Council/United Kingdom -- MC_U123160654/Medical Research Council/United Kingdom -- MC_U132692719/Medical Research Council/United Kingdom -- MC_UP_A600_1023/Medical Research Council/United Kingdom -- MC_UP_A600_1024/Medical Research Council/United Kingdom -- U.1051.02.011.00001.01 (85860)/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2012 May 6;485(7399):507-11. doi: 10.1038/nature11058.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Toxicology Unit, Hodgkin Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22622579" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Death/drug effects ; Cinnamates/pharmacology ; Eukaryotic Initiation Factor-2/analysis/*chemistry/*metabolism ; Hippocampus/cytology/metabolism/pathology ; Kaplan-Meier Estimate ; Mice ; Mice, Inbred C57BL ; Neurodegenerative Diseases/etiology/*metabolism/pathology ; Neurons/drug effects/pathology ; Neuroprotective Agents ; Phosphoproteins/analysis/*metabolism ; Phosphorylation ; PrPSc Proteins/analysis/metabolism/toxicity ; Prion Diseases/pathology ; Prions/biosynthesis/genetics/*metabolism ; *Protein Biosynthesis/drug effects ; Protein Folding/drug effects ; Protein Phosphatase 1/genetics/metabolism ; Repressor Proteins/analysis/chemistry/*metabolism ; Synapses/drug effects/metabolism/pathology ; Synaptic Transmission/drug effects ; Thiourea/analogs & derivatives/pharmacology ; Unfolded Protein Response/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...