ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006-07-29
    Description: Serotonin [5-hydroxytryptamine (5-HT)] neurotransmission in the central nervous system modulates depression and anxiety-related behaviors in humans and rodents, but the responsible downstream receptors remain poorly understood. We demonstrate that global disruption of 5-HT2A receptor (5HT2AR) signaling in mice reduces inhibition in conflict anxiety paradigms without affecting fear-conditioned and depression-related behaviors. Selective restoration of 5HT2AR signaling to the cortex normalized conflict anxiety behaviors. These findings indicate a specific role for cortical 5HT2AR function in the modulation of conflict anxiety, consistent with models of cortical, "top-down" influences on risk assessment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weisstaub, Noelia V -- Zhou, Mingming -- Lira, Alena -- Lambe, Evelyn -- Gonzalez-Maeso, Javier -- Hornung, Jean-Pierre -- Sibille, Etienne -- Underwood, Mark -- Itohara, Shigeyoshi -- Dauer, William T -- Ansorge, Mark S -- Morelli, Emanuela -- Mann, J John -- Toth, Miklos -- Aghajanian, George -- Sealfon, Stuart C -- Hen, Rene -- Gingrich, Jay A -- KO8 MH01711/MH/NIMH NIH HHS/ -- P01 DA12923/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 2006 Jul 28;313(5786):536-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Columbia University and the New York State Psychiatric Institute, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16873667" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anxiety/*physiopathology ; Cerebral Cortex/*metabolism ; Conditioning (Psychology) ; Conflict (Psychology) ; Depression/physiopathology ; Exploratory Behavior ; Fear ; Limbic System/metabolism ; Mice ; Mice, Knockout ; Patch-Clamp Techniques ; Periaqueductal Gray/metabolism ; Prosencephalon/metabolism ; Receptor, Serotonin, 5-HT2A/genetics/*metabolism ; Receptor, Serotonin, 5-HT2C/metabolism ; Receptors, Neurotransmitter/metabolism ; Risk-Taking ; Serotonin/physiology ; *Signal Transduction ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-04-14
    Description: Computational approaches are breaking new ground in understanding how embryos form. Here, we discuss recent studies that couple precise measurements in the embryo with appropriately matched modeling and computational methods to investigate classic embryonic patterning strategies. We include signaling gradients, activator-inhibitor systems, and coupled oscillators, as well as emerging paradigms such as tissue deformation. Parallel progress in theory and experiment will play an increasingly central role in deciphering developmental patterning.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morelli, Luis G -- Uriu, Koichiro -- Ares, Saul -- Oates, Andrew C -- New York, N.Y. -- Science. 2012 Apr 13;336(6078):187-91. doi: 10.1126/science.1215478.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22499940" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Patterning ; Computational Biology ; *Computer Simulation ; Drosophila/embryology ; Embryo, Nonmammalian/cytology/metabolism ; Embryonic Development ; Gene Expression Regulation, Developmental ; Gene Regulatory Networks ; *Models, Biological ; Signal Transduction ; Zebrafish/embryology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-07-22
    Description: The c-myc proto-oncogene product, Myc, is a transcription factor that binds thousands of genomic loci. Recent work suggested that rather than up- and downregulating selected groups of genes, Myc targets all active promoters and enhancers in the genome (a phenomenon termed 'invasion') and acts as a general amplifier of transcription. However, the available data did not readily discriminate between direct and indirect effects of Myc on RNA biogenesis. We addressed this issue with genome-wide chromatin immunoprecipitation and RNA expression profiles during B-cell lymphomagenesis in mice, in cultured B cells and fibroblasts. Consistent with long-standing observations, we detected general increases in total RNA or messenger RNA copies per cell (hereby termed 'amplification') when comparing actively proliferating cells with control quiescent cells: this was true whether cells were stimulated by mitogens (requiring endogenous Myc for a proliferative response) or by deregulated, oncogenic Myc activity. RNA amplification and promoter/enhancer invasion by Myc were separable phenomena that could occur without one another. Moreover, whether or not associated with RNA amplification, Myc drove the differential expression of distinct subsets of target genes. Hence, although having the potential to interact with all active or poised regulatory elements in the genome, Myc does not directly act as a global transcriptional amplifier. Instead, our results indicate that Myc activates and represses transcription of discrete gene sets, leading to changes in cellular state that can in turn feed back on global RNA production and turnover.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4110711/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4110711/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sabo, Arianna -- Kress, Theresia R -- Pelizzola, Mattia -- de Pretis, Stefano -- Gorski, Marcin M -- Tesi, Alessandra -- Morelli, Marco J -- Bora, Pranami -- Doni, Mirko -- Verrecchia, Alessandro -- Tonelli, Claudia -- Faga, Giovanni -- Bianchi, Valerio -- Ronchi, Alberto -- Low, Diana -- Muller, Heiko -- Guccione, Ernesto -- Campaner, Stefano -- Amati, Bruno -- 10-0245/Worldwide Cancer Research/United Kingdom -- 268671/European Research Council/International -- England -- Nature. 2014 Jul 24;511(7510):488-92. doi: 10.1038/nature13537. Epub 2014 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Via Adamello 16, 20139 Milan, Italy [2] Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, 20139 Milan, Italy [3]. ; 1] Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Via Adamello 16, 20139 Milan, Italy [2]. ; Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Via Adamello 16, 20139 Milan, Italy. ; Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, 20139 Milan, Italy. ; Institute of Molecular and Cell Biology, Singapore 138673, Singapore. ; 1] Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Via Adamello 16, 20139 Milan, Italy [2] Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, 20139 Milan, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043028" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/metabolism/pathology ; *Cell Proliferation ; Cell Transformation, Neoplastic/*genetics/pathology ; Chromatin/genetics/metabolism ; Chromatin Immunoprecipitation ; Disease Progression ; Down-Regulation/genetics ; Female ; Fibroblasts/cytology/metabolism ; Gene Expression Profiling ; *Gene Expression Regulation, Neoplastic/genetics ; Genome/genetics ; Lymphoma, B-Cell/*genetics/metabolism/*pathology ; Male ; Mice ; Mitogens/pharmacology ; Promoter Regions, Genetic/genetics ; Proto-Oncogene Proteins c-myc/genetics/*metabolism ; RNA, Messenger/biosynthesis/genetics/metabolism ; Transcription Factors/metabolism ; *Transcription, Genetic/genetics ; Up-Regulation/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-07-12
    Description: During embryonic development, temporal and spatial cues are coordinated to generate a segmented body axis. In sequentially segmenting animals, the rhythm of segmentation is reported to be controlled by the time scale of genetic oscillations that periodically trigger new segment formation. However, we present real-time measurements of genetic oscillations in zebrafish embryos showing that their time scale is not sufficient to explain the temporal period of segmentation. A second time scale, the rate of tissue shortening, contributes to the period of segmentation through a Doppler effect. This contribution is modulated by a gradual change in the oscillation profile across the tissue. We conclude that the rhythm of segmentation is an emergent property controlled by the time scale of genetic oscillations, the change of oscillation profile, and tissue shortening.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soroldoni, Daniele -- Jorg, David J -- Morelli, Luis G -- Richmond, David L -- Schindelin, Johannes -- Julicher, Frank -- Oates, Andrew C -- 098025/Wellcome Trust/United Kingdom -- MC_UP_1202/3/Medical Research Council/United Kingdom -- WT098025MA/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 Jul 11;345(6193):222-5. doi: 10.1126/science.1253089.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr 108, 01307 Dresden, Germany. Medical Research Council (MRC)-National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK. Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK. ; Max Planck Institute for the Physics of Complex Systems, Nothnitzer Strasse 38, 01187 Dresden, Germany. ; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr 108, 01307 Dresden, Germany. Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisica de Buenos Aires, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Pabellon 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina. ; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr 108, 01307 Dresden, Germany. ; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr 108, 01307 Dresden, Germany. Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, 271 Animal Sciences, 1675 Observatory Drive, Madison, WI 53706, USA. ; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr 108, 01307 Dresden, Germany. Medical Research Council (MRC)-National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK. Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK. aoates@nimr.mrc.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25013078" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Patterning/*genetics ; *Doppler Effect ; Embryo, Nonmammalian/physiology ; *Periodicity ; Zebrafish/embryology/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...