ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-11-05
    Description: Anxiety-related conditions are among the most difficult neuropsychiatric diseases to treat pharmacologically, but respond to cognitive therapies. There has therefore been interest in identifying relevant top-down pathways from cognitive control regions in medial prefrontal cortex (mPFC). Identification of such pathways could contribute to our understanding of the cognitive regulation of affect, and provide pathways for intervention. Previous studies have suggested that dorsal and ventral mPFC subregions exert opposing effects on fear, as do subregions of other structures. However, precise causal targets for top-down connections among these diverse possibilities have not been established. Here we show that the basomedial amygdala (BMA) represents the major target of ventral mPFC in amygdala in mice. Moreover, BMA neurons differentiate safe and aversive environments, and BMA activation decreases fear-related freezing and high-anxiety states. Lastly, we show that the ventral mPFC-BMA projection implements top-down control of anxiety state and learned freezing, both at baseline and in stress-induced anxiety, defining a broadly relevant new top-down behavioural regulation pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adhikari, Avishek -- Lerner, Talia N -- Finkelstein, Joel -- Pak, Sally -- Jennings, Joshua H -- Davidson, Thomas J -- Ferenczi, Emily -- Gunaydin, Lisa A -- Mirzabekov, Julie J -- Ye, Li -- Kim, Sung-Yon -- Lei, Anna -- Deisseroth, Karl -- 1F32MH105053-01/MH/NIMH NIH HHS/ -- K99 MH106649/MH/NIMH NIH HHS/ -- K99MH106649/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Nov 12;527(7577):179-85. doi: 10.1038/nature15698. Epub 2015 Nov 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, Stanford University, Stanford, California 94305, USA. ; CNC Program, Stanford University, Stanford, California 94304, USA. ; Neurosciences Program, Stanford University, Stanford, California 94305, USA. ; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305, USA. ; Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26536109" target="_blank"〉PubMed〈/a〉
    Keywords: Amygdala/cytology/*physiology ; Animals ; Anxiety/*physiopathology/psychology ; Extinction, Psychological/physiology ; Fear/*physiology/psychology ; Female ; Freezing Reaction, Cataleptic/physiology ; Learning/physiology ; Male ; Mice ; Mice, Inbred C57BL ; Neural Pathways/*physiology ; Prefrontal Cortex/cytology/physiology ; Stress, Psychological/physiopathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-03-31
    Description: Rapamycin, an inhibitor of mechanistic target of rapamycin complex 1 (mTORC1), extends the life spans of yeast, flies, and mice. Calorie restriction, which increases life span and insulin sensitivity, is proposed to function by inhibition of mTORC1, yet paradoxically, chronic administration of rapamycin substantially impairs glucose tolerance and insulin action. We demonstrate that rapamycin disrupted a second mTOR complex, mTORC2, in vivo and that mTORC2 was required for the insulin-mediated suppression of hepatic gluconeogenesis. Further, decreased mTORC1 signaling was sufficient to extend life span independently from changes in glucose homeostasis, as female mice heterozygous for both mTOR and mLST8 exhibited decreased mTORC1 activity and extended life span but had normal glucose tolerance and insulin sensitivity. Thus, mTORC2 disruption is an important mediator of the effects of rapamycin in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324089/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324089/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lamming, Dudley W -- Ye, Lan -- Katajisto, Pekka -- Goncalves, Marcus D -- Saitoh, Maki -- Stevens, Deanna M -- Davis, James G -- Salmon, Adam B -- Richardson, Arlan -- Ahima, Rexford S -- Guertin, David A -- Sabatini, David M -- Baur, Joseph A -- 1F32AG032833-01A1/AG/NIA NIH HHS/ -- CA129105/CA/NCI NIH HHS/ -- F32 AG032833/AG/NIA NIH HHS/ -- P30DK19525/DK/NIDDK NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R01 CA129105-05/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Mar 30;335(6076):1638-43. doi: 10.1126/science.1215135.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22461615" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue, White/metabolism ; Animals ; Carrier Proteins/genetics/metabolism ; Female ; Gluconeogenesis ; Glucose/metabolism ; Glucose Clamp Technique ; Homeostasis ; Insulin/administration & dosage/blood ; *Insulin Resistance ; Liver/metabolism ; *Longevity ; Male ; Mice ; Mice, Inbred C57BL ; Multiprotein Complexes ; Muscle, Skeletal/metabolism ; Phosphorylation ; Proteins/antagonists & inhibitors/metabolism ; Proto-Oncogene Proteins c-akt/metabolism ; Signal Transduction ; Sirolimus/*pharmacology ; TOR Serine-Threonine Kinases/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-01-13
    Description: Exercise benefits a variety of organ systems in mammals, and some of the best-recognized effects of exercise on muscle are mediated by the transcriptional co-activator PPAR-gamma co-activator-1 alpha (PGC1-alpha). Here we show in mouse that PGC1-alpha expression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. Irisin acts on white adipose cells in culture and in vivo to stimulate UCP1 expression and a broad program of brown-fat-like development. Irisin is induced with exercise in mice and humans, and mildly increased irisin levels in the blood cause an increase in energy expenditure in mice with no changes in movement or food intake. This results in improvements in obesity and glucose homeostasis. Irisin could be therapeutic for human metabolic disease and other disorders that are improved with exercise.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522098/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522098/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bostrom, Pontus -- Wu, Jun -- Jedrychowski, Mark P -- Korde, Anisha -- Ye, Li -- Lo, James C -- Rasbach, Kyle A -- Bostrom, Elisabeth Almer -- Choi, Jang Hyun -- Long, Jonathan Z -- Kajimura, Shingo -- Zingaretti, Maria Cristina -- Vind, Birgitte F -- Tu, Hua -- Cinti, Saverio -- Hojlund, Kurt -- Gygi, Steven P -- Spiegelman, Bruce M -- DK31405/DK/NIDDK NIH HHS/ -- DK54477/DK/NIDDK NIH HHS/ -- K99 DK087853/DK/NIDDK NIH HHS/ -- R01 DK054477/DK/NIDDK NIH HHS/ -- R01 DK061562/DK/NIDDK NIH HHS/ -- R37 DK031405/DK/NIDDK NIH HHS/ -- England -- Nature. 2012 Jan 11;481(7382):463-8. doi: 10.1038/nature10777.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22237023" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/cytology/drug effects/metabolism ; Adipose Tissue, Brown/*cytology/drug effects/metabolism ; Adipose Tissue, White/*cytology/drug effects/metabolism ; Animals ; Cell Respiration/drug effects ; Cells, Cultured ; Culture Media, Conditioned/pharmacology ; Energy Metabolism/drug effects/genetics/physiology ; Exercise/physiology ; Gene Expression Regulation/drug effects/genetics ; Hormones/metabolism/secretion ; Humans ; Insulin Resistance/physiology ; Intracellular Signaling Peptides and Proteins/genetics/metabolism ; Ion Channels/metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Transgenic ; Mitochondrial Proteins/metabolism ; Models, Animal ; Muscle Cells/metabolism ; Obesity/blood/chemically induced/prevention & control ; Physical Conditioning, Animal/physiology ; Plasma/chemistry ; Subcutaneous Fat/cytology/drug effects/metabolism ; *Thermogenesis/drug effects/genetics ; Trans-Activators/deficiency/genetics/*metabolism/secretion ; Transcription Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-01-07
    Description: A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological data sets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA). Here we performed a genome-wide association study meta-analysis in a total of 〉100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating approximately 10 million single-nucleotide polymorphisms. We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 101 (refs 2 - 4). We devised an in silico pipeline using established bioinformatics methods based on functional annotation, cis-acting expression quantitative trait loci and pathway analyses--as well as novel methods based on genetic overlap with human primary immunodeficiency, haematological cancer somatic mutations and knockout mouse phenotypes--to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3944098/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3944098/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okada, Yukinori -- Wu, Di -- Trynka, Gosia -- Raj, Towfique -- Terao, Chikashi -- Ikari, Katsunori -- Kochi, Yuta -- Ohmura, Koichiro -- Suzuki, Akari -- Yoshida, Shinji -- Graham, Robert R -- Manoharan, Arun -- Ortmann, Ward -- Bhangale, Tushar -- Denny, Joshua C -- Carroll, Robert J -- Eyler, Anne E -- Greenberg, Jeffrey D -- Kremer, Joel M -- Pappas, Dimitrios A -- Jiang, Lei -- Yin, Jian -- Ye, Lingying -- Su, Ding-Feng -- Yang, Jian -- Xie, Gang -- Keystone, Ed -- Westra, Harm-Jan -- Esko, Tonu -- Metspalu, Andres -- Zhou, Xuezhong -- Gupta, Namrata -- Mirel, Daniel -- Stahl, Eli A -- Diogo, Dorothee -- Cui, Jing -- Liao, Katherine -- Guo, Michael H -- Myouzen, Keiko -- Kawaguchi, Takahisa -- Coenen, Marieke J H -- van Riel, Piet L C M -- van de Laar, Mart A F J -- Guchelaar, Henk-Jan -- Huizinga, Tom W J -- Dieude, Philippe -- Mariette, Xavier -- Bridges, S Louis Jr -- Zhernakova, Alexandra -- Toes, Rene E M -- Tak, Paul P -- Miceli-Richard, Corinne -- Bang, So-Young -- Lee, Hye-Soon -- Martin, Javier -- Gonzalez-Gay, Miguel A -- Rodriguez-Rodriguez, Luis -- Rantapaa-Dahlqvist, Solbritt -- Arlestig, Lisbeth -- Choi, Hyon K -- Kamatani, Yoichiro -- Galan, Pilar -- Lathrop, Mark -- RACI consortium -- GARNET consortium -- Eyre, Steve -- Bowes, John -- Barton, Anne -- de Vries, Niek -- Moreland, Larry W -- Criswell, Lindsey A -- Karlson, Elizabeth W -- Taniguchi, Atsuo -- Yamada, Ryo -- Kubo, Michiaki -- Liu, Jun S -- Bae, Sang-Cheol -- Worthington, Jane -- Padyukov, Leonid -- Klareskog, Lars -- Gregersen, Peter K -- Raychaudhuri, Soumya -- Stranger, Barbara E -- De Jager, Philip L -- Franke, Lude -- Visscher, Peter M -- Brown, Matthew A -- Yamanaka, Hisashi -- Mimori, Tsuneyo -- Takahashi, Atsushi -- Xu, Huji -- Behrens, Timothy W -- Siminovitch, Katherine A -- Momohara, Shigeki -- Matsuda, Fumihiko -- Yamamoto, Kazuhiko -- Plenge, Robert M -- 20385/Arthritis Research UK/United Kingdom -- 79321/Canadian Institutes of Health Research/Canada -- K08-KAR055688A/PHS HHS/ -- K24 AR052403/AR/NIAMS NIH HHS/ -- P60 AR047785/AR/NIAMS NIH HHS/ -- R01 AR056768/AR/NIAMS NIH HHS/ -- R01 AR057108/AR/NIAMS NIH HHS/ -- R01 AR059648/AR/NIAMS NIH HHS/ -- R01 AR063759/AR/NIAMS NIH HHS/ -- R01-AR056291/AR/NIAMS NIH HHS/ -- R01-AR056768/AR/NIAMS NIH HHS/ -- R01-AR057108/AR/NIAMS NIH HHS/ -- R01-AR059648/AR/NIAMS NIH HHS/ -- R01-AR065944/AR/NIAMS NIH HHS/ -- R01AR063759-01A1/AR/NIAMS NIH HHS/ -- R21 AR056042/AR/NIAMS NIH HHS/ -- T15 LM007450/LM/NLM NIH HHS/ -- U01 GM092691/GM/NIGMS NIH HHS/ -- U01-GM092691/GM/NIGMS NIH HHS/ -- U19 HL065962/HL/NHLBI NIH HHS/ -- England -- Nature. 2014 Feb 20;506(7488):376-81. doi: 10.1038/nature12873. Epub 2013 Dec 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. [2] Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. [3] Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts 02142, USA. ; 1] Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. [2] Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. [3] Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts 02142, USA. [4] Department of Statistics, Harvard University, Cambridge, Massachusetts 02138, USA. [5] Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Clayton, Victoria 3800, Australia. ; 1] Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. [2] Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts 02142, USA. [3] Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA. ; 1] Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan. [2] Department of Rheumatology and Clinical immunology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan. ; Institute of Rheumatology, Tokyo Women's Medical University, Tokyo 162-0054, Japan. ; Laboratory for Autoimmune Diseases, Center for Integrative Medical Sciences, RIKEN, Yokohama 230-0045, Japan. ; Department of Rheumatology and Clinical immunology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan. ; Immunology Biomarkers Group, Genentech, South San Francisco, California 94080, USA. ; 1] Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA. [2] Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA. ; Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA. ; Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA. ; New York University Hospital for Joint Diseases, New York, New York 10003, USA. ; Department of Medicine, Albany Medical Center and The Center for Rheumatology, Albany, New York 12206, USA. ; Division of Rheumatology, Department of Medicine, New York, Presbyterian Hospital, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA. ; Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China. ; Department of Pharmacology, Second Military Medical University, Shanghai 200433, China. ; 1] University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4072, Australia. [2] Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia. ; 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada. [2] Toronto General Research Institute, Toronto, Ontario M5G 2M9, Canada. [3] Department of Medicine, University of Toronto, Toronto, Ontario M5S 2J7, Canada. ; Department of Medicine, Mount Sinai Hospital and University of Toronto, Toronto M5S 2J7, Canada. ; Department of Genetics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9700 RB, the Netherlands. ; 1] Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts 02142, USA. [2] Estonian Genome Center, University of Tartu, Riia 23b, Tartu 51010, Estonia. [3] Division of Endocrinology, Children's Hospital, Boston, Massachusetts 02115, USA. ; Estonian Genome Center, University of Tartu, Riia 23b, Tartu 51010, Estonia. ; School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China. ; Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts 02142, USA. ; The Department of Psychiatry at Mount Sinai School of Medicine, New York, New York 10029, USA. ; 1] Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. [2] Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts 02142, USA. [3] Division of Endocrinology, Children's Hospital, Boston, Massachusetts 02115, USA. ; Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan. ; Department of Human Genetics, Radboud University Medical Centre, Nijmegen 6500 HB, the Netherlands. ; Department of Rheumatology, Radboud University Medical Centre, Nijmegen 6500 HB, the Netherlands. ; Department of Rheumatology and Clinical Immunology, Arthritis Center Twente, University Twente & Medisch Spectrum Twente, Enschede 7500 AE, the Netherlands. ; Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden 2300 RC, the Netherlands. ; Department of Rheumatology, Leiden University Medical Center, Leiden 2300 RC, the Netherlands. ; 1] Service de Rhumatologie et INSERM U699 Hopital Bichat Claude Bernard, Assistance Publique des Hopitaux de Paris, Paris 75018, France. [2] Universite Paris 7-Diderot, Paris 75013, France. ; Institut National de la Sante et de la Recherche Medicale (INSERM) U1012, Universite Paris-Sud, Rhumatologie, Hopitaux Universitaires Paris-Sud, Assistance Publique-Hopitaux de Paris (AP-HP), Le Kremlin Bicetre 94275, France. ; Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA. ; 1] Department of Genetics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9700 RB, the Netherlands. [2] Department of Rheumatology, Leiden University Medical Center, Leiden 2300 RC, the Netherlands. ; 1] AMC/University of Amsterdam, Amsterdam 1105 AZ, the Netherlands. [2] GlaxoSmithKline, Stevenage SG1 2NY, UK. [3] University of Cambridge, Cambridge CB2 1TN, UK. ; Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 133-792, South Korea. ; Instituto de Parasitologia y Biomedicina Lopez-Neyra, CSIC, Granada 18100, Spain. ; Department of Rheumatology, Hospital Marques de Valdecilla, IFIMAV, Santander 39008, Spain. ; Hospital Clinico San Carlos, Madrid 28040, Spain. ; 1] Department of Public Health and Clinical Medicine, Umea University, Umea SE-901 87, Sweden. [2] Department of Rheumatology, Umea University, Umea SE-901 87, Sweden. ; 1] Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, Massachusetts, USA. [2] Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts 02118, USA. [3] Clinical Epidemiology Research and Training Unit, Boston University School of Medicine, Boston, Massachusetts 02118, USA. ; Centre d'Etude du Polymorphisme Humain (CEPH), Paris 75010, France. ; Universite Paris 13 Sorbonne Paris Cite, UREN (Nutritional Epidemiology Research Unit), Inserm (U557), Inra (U1125), Cnam, Bobigny 93017, France. ; McGill University and Genome Quebec Innovation Centre, Montreal, Quebec H3A 0G1 Canada. ; 1] Arthritis Research UK Epidemiology Unit, Centre for Musculoskeletal Research, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK. [2] National Institute for Health Research, Manchester Musculoskeletal Biomedical Research Unit, Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9NT, UK. ; Arthritis Research UK Epidemiology Unit, Centre for Musculoskeletal Research, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK. ; Department of Clinical Immunology and Rheumatology & Department of Genome Analysis, Academic Medical Center/University of Amsterdam, Amsterdam 1105 AZ, the Netherlands. ; Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA. ; Rosalind Russell Medical Research Center for Arthritis, Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, California 94117, USA. ; Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Unit of Statistical Genetics, Center for Genomic Medicine Graduate School of Medicine Kyoto University, Kyoto 606-8507, Japan. ; Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama 230-0045, Japan. ; Department of Statistics, Harvard University, Cambridge, Massachusetts 02138, USA. ; Rheumatology Unit, Department of Medicine (Solna), Karolinska Institutet, Stockholm SE-171 76, Sweden. ; The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York 11030, USA. ; 1] Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. [2] Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. [3] Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts 02142, USA. [4] NIHR Manchester Musculoskeletal Biomedical, Research Unit, Central Manchester NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9NT, UK. ; 1] Section of Genetic Medicine, University of Chicago, Chicago, Illinois 60637, USA. [2] Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois 60637, USA. ; University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4072, Australia. ; Laboratory for Statistical Analysis, Center for Integrative Medical Sciences, RIKEN, Yokohama 230-0045, Japan. ; 1] Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan. [2] Core Research for Evolutional Science and Technology (CREST) program, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan. [3] Institut National de la Sante et de la Recherche Medicale (INSERM) Unite U852, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan. ; 1] Laboratory for Autoimmune Diseases, Center for Integrative Medical Sciences, RIKEN, Yokohama 230-0045, Japan. [2] Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24390342" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Arthritis, Rheumatoid/*drug therapy/*genetics/metabolism/pathology ; Asian Continental Ancestry Group/genetics ; Case-Control Studies ; Computational Biology ; *Drug Discovery ; Drug Repositioning ; European Continental Ancestry Group/genetics ; Female ; Genetic Predisposition to Disease/*genetics ; Genome-Wide Association Study ; Hematologic Neoplasms/genetics/metabolism ; Humans ; Male ; Mice ; Mice, Knockout ; *Molecular Targeted Therapy ; Polymorphism, Single Nucleotide/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-04-03
    Description: The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken-the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3187626/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3187626/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Warren, Wesley C -- Clayton, David F -- Ellegren, Hans -- Arnold, Arthur P -- Hillier, Ladeana W -- Kunstner, Axel -- Searle, Steve -- White, Simon -- Vilella, Albert J -- Fairley, Susan -- Heger, Andreas -- Kong, Lesheng -- Ponting, Chris P -- Jarvis, Erich D -- Mello, Claudio V -- Minx, Pat -- Lovell, Peter -- Velho, Tarciso A F -- Ferris, Margaret -- Balakrishnan, Christopher N -- Sinha, Saurabh -- Blatti, Charles -- London, Sarah E -- Li, Yun -- Lin, Ya-Chi -- George, Julia -- Sweedler, Jonathan -- Southey, Bruce -- Gunaratne, Preethi -- Watson, Michael -- Nam, Kiwoong -- Backstrom, Niclas -- Smeds, Linnea -- Nabholz, Benoit -- Itoh, Yuichiro -- Whitney, Osceola -- Pfenning, Andreas R -- Howard, Jason -- Volker, Martin -- Skinner, Bejamin M -- Griffin, Darren K -- Ye, Liang -- McLaren, William M -- Flicek, Paul -- Quesada, Victor -- Velasco, Gloria -- Lopez-Otin, Carlos -- Puente, Xose S -- Olender, Tsviya -- Lancet, Doron -- Smit, Arian F A -- Hubley, Robert -- Konkel, Miriam K -- Walker, Jerilyn A -- Batzer, Mark A -- Gu, Wanjun -- Pollock, David D -- Chen, Lin -- Cheng, Ze -- Eichler, Evan E -- Stapley, Jessica -- Slate, Jon -- Ekblom, Robert -- Birkhead, Tim -- Burke, Terry -- Burt, David -- Scharff, Constance -- Adam, Iris -- Richard, Hugues -- Sultan, Marc -- Soldatov, Alexey -- Lehrach, Hans -- Edwards, Scott V -- Yang, Shiaw-Pyng -- Li, Xiaoching -- Graves, Tina -- Fulton, Lucinda -- Nelson, Joanne -- Chinwalla, Asif -- Hou, Shunfeng -- Mardis, Elaine R -- Wilson, Richard K -- BB/D013704/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E010652/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/F007590/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBE0175091/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBS/E/I/00001425/Biotechnology and Biological Sciences Research Council/United Kingdom -- MC_U137761446/Medical Research Council/United Kingdom -- P30 DA018310/DA/NIDA NIH HHS/ -- R01 DC007218/DC/NIDCD NIH HHS/ -- R01 GM059290/GM/NIGMS NIH HHS/ -- R01 GM085233/GM/NIGMS NIH HHS/ -- R01 GM59290/GM/NIGMS NIH HHS/ -- R01 HG002939/HG/NHGRI NIH HHS/ -- R01 NS045264/NS/NINDS NIH HHS/ -- R01NS051820/NS/NINDS NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Apr 1;464(7289):757-62. doi: 10.1038/nature08819.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Genome Center, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA. wwarren@watson.wustl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20360741" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/genetics ; Animals ; Auditory Perception/genetics ; Brain/physiology ; Chickens/genetics ; Evolution, Molecular ; Female ; Finches/*genetics/physiology ; Gene Duplication ; Gene Regulatory Networks/genetics ; Genome/*genetics ; Male ; MicroRNAs/genetics ; Models, Animal ; Multigene Family/genetics ; Retroelements/genetics ; Sex Chromosomes/genetics ; Terminal Repeat Sequences/genetics ; Transcription, Genetic/genetics ; Vocalization, Animal/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-03-05
    Description: The worldwide epidemic of obesity has increased the urgency to develop a deeper understanding of physiological systems related to energy balance and energy storage, including the mechanisms controlling the development of fat cells (adipocytes). The differentiation of committed preadipocytes to adipocytes is controlled by PPARgamma and several other transcription factors, but the molecular basis for preadipocyte determination is not understood. Using a new method for the quantitative analysis of transcriptional components, we identified the zinc-finger protein Zfp423 as a factor enriched in preadipose versus non-preadipose fibroblasts. Ectopic expression of Zfp423 in non-adipogenic NIH 3T3 fibroblasts robustly activates expression of Pparg in undifferentiated cells and permits cells to undergo adipocyte differentiation under permissive conditions. Short hairpin RNA (shRNA)-mediated reduction of Zfp423 expression in 3T3-L1 cells blunts preadipocyte Pparg expression and diminishes the ability of these cells to differentiate. Furthermore, both brown and white adipocyte differentiation is markedly impaired in Zfp423-deficient mouse embryos. Zfp423 regulates Pparg expression, in part, through amplification of the BMP signalling pathway, an effect dependent on the SMAD-binding capacity of Zfp423. This study identifies Zfp423 as a transcriptional regulator of preadipocyte determination.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845731/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845731/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gupta, Rana K -- Arany, Zoltan -- Seale, Patrick -- Mepani, Rina J -- Ye, Li -- Conroe, Heather M -- Roby, Yang A -- Kulaga, Heather -- Reed, Randall R -- Spiegelman, Bruce M -- DK081605/DK/NIDDK NIH HHS/ -- DK31405/DK/NIDDK NIH HHS/ -- F32 DK079507/DK/NIDDK NIH HHS/ -- F32 DK079507-01/DK/NIDDK NIH HHS/ -- F32 DK079507-02/DK/NIDDK NIH HHS/ -- K08 HL79172-01/HL/NHLBI NIH HHS/ -- K99 DK081605/DK/NIDDK NIH HHS/ -- P30 DK040561/DK/NIDDK NIH HHS/ -- P30 DK040561-14/DK/NIDDK NIH HHS/ -- R01 DC008295/DC/NIDCD NIH HHS/ -- R01 DC008295-04/DC/NIDCD NIH HHS/ -- R01DC008295/DC/NIDCD NIH HHS/ -- England -- Nature. 2010 Mar 25;464(7288):619-23. doi: 10.1038/nature08816. Epub 2010 Mar 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology and Division of Metabolism and Chronic Disease, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20200519" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/*cytology ; Animals ; *Cell Differentiation ; DNA-Binding Proteins/*metabolism ; Female ; *Gene Expression Regulation, Developmental ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; NIH 3T3 Cells ; PPAR gamma/metabolism ; Protein Structure, Tertiary ; Smad Proteins/metabolism ; Transcription Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...