ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-07-18
    Description: Internal brain states form key determinants for sensory perception, sensorimotor coordination and learning. A prominent reflection of different brain states in the mammalian central nervous system is the presence of distinct patterns of cortical synchrony, as revealed by extracellular recordings of the electroencephalogram, local field potential and action potentials. Such temporal correlations of cortical activity are thought to be fundamental mechanisms of neuronal computation. However, it is unknown how cortical synchrony is reflected in the intracellular membrane potential (V(m)) dynamics of behaving animals. Here we show, using dual whole-cell recordings from layer 2/3 primary somatosensory barrel cortex in behaving mice, that the V(m) of nearby neurons is highly correlated during quiet wakefulness. However, when the mouse is whisking, an internally generated state change reduces the V(m) correlation, resulting in a desynchronized local field potential and electroencephalogram. Action potential activity was sparse during both quiet wakefulness and active whisking. Single action potentials were driven by a large, brief and specific excitatory input that was not present in the V(m) of neighbouring cells. Action potential initiation occurs with a higher signal-to-noise ratio during active whisking than during quiet periods. Therefore, we show that an internal brain state dynamically regulates cortical membrane potential synchrony during behaviour and defines different modes of cortical processing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Poulet, James F A -- Petersen, Carl C H -- England -- Nature. 2008 Aug 14;454(7206):881-5. doi: 10.1038/nature07150. Epub 2008 Jul 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18633351" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Electroencephalography ; Exploratory Behavior/*physiology ; Male ; Membrane Potentials/*physiology ; Mice ; Mice, Inbred C57BL ; Neurons/*physiology ; Somatosensory Cortex/*physiology ; Wakefulness/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-05-01
    Description: The functional and anatomical rearrangements of cortical sensory maps accompanying changes in experience are not well understood. We examined in vivo and in vitro how the sensory map and underlying synaptic connectivity of the developing rat barrel cortex are altered when the sensory input to the cortex is partially deprived. In the nondeprived cortex, both the sensory responses and synaptic connectivity between columns were strengthened through an increase in the synaptic connection probability between L2/3 pyramids in adjacent columns. This was accompanied by a selective growth of L2/3pyramid axonal arbors between spared columns. In contrast, deprived and nondeprived cortical columns became weakly connected in their L2/3 pyramid connections.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Petersen, Carl C H -- Brecht, Michael -- Hahn, Thomas T G -- Sakmann, Bert -- New York, N.Y. -- Science. 2004 Apr 30;304(5671):739-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Physiology, Max-Planck-Institute for Medical Research, Jahnstrasse 29, Heidelberg D-69120, Germany. carl.petersen@epfl.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15118164" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Brain Mapping ; Electric Stimulation ; Excitatory Postsynaptic Potentials ; Image Processing, Computer-Assisted ; In Vitro Techniques ; Nerve Net/physiology ; *Neuronal Plasticity ; Patch-Clamp Techniques ; Pyramidal Cells/*physiology/ultrastructure ; Rats ; Rats, Wistar ; Somatosensory Cortex/cytology/growth & development/*physiology ; Synapses/*physiology ; Synaptic Transmission ; Vibrissae/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-11-27
    Description: Classical studies of mammalian movement control define a prominent role for the primary motor cortex. Investigating the mouse whisker system, we found an additional and equally direct pathway for cortical motor control driven by the primary somatosensory cortex. Whereas activity in primary motor cortex directly evokes exploratory whisker protraction, primary somatosensory cortex directly drives whisker retraction, providing a rapid negative feedback signal for sensorimotor integration. Motor control by sensory cortex suggests the need to reevaluate the functional organization of cortical maps.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matyas, Ferenc -- Sreenivasan, Varun -- Marbach, Fred -- Wacongne, Catherine -- Barsy, Boglarka -- Mateo, Celine -- Aronoff, Rachel -- Petersen, Carl C H -- New York, N.Y. -- Science. 2010 Nov 26;330(6008):1240-3. doi: 10.1126/science.1195797.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21109671" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Mapping ; Electric Stimulation ; Feedback, Sensory ; Mice ; Mice, Inbred C57BL ; *Motor Activity ; Motor Cortex/physiology ; Neural Pathways/physiology ; Signal Transduction ; Somatosensory Cortex/*physiology ; Vibrissae/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...