ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (10)
  • Animals  (10)
Collection
  • Articles  (10)
  • 1
    Publication Date: 2002-06-01
    Description: The high degree of similarity between the mouse and human genomes is demonstrated through analysis of the sequence of mouse chromosome 16 (Mmu 16), which was obtained as part of a whole-genome shotgun assembly of the mouse genome. The mouse genome is about 10% smaller than the human genome, owing to a lower repetitive DNA content. Comparison of the structure and protein-coding potential of Mmu 16 with that of the homologous segments of the human genome identifies regions of conserved synteny with human chromosomes (Hsa) 3, 8, 12, 16, 21, and 22. Gene content and order are highly conserved between Mmu 16 and the syntenic blocks of the human genome. Of the 731 predicted genes on Mmu 16, 509 align with orthologs on the corresponding portions of the human genome, 44 are likely paralogous to these genes, and 164 genes have homologs elsewhere in the human genome; there are 14 genes for which we could find no human counterpart.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mural, Richard J -- Adams, Mark D -- Myers, Eugene W -- Smith, Hamilton O -- Miklos, George L Gabor -- Wides, Ron -- Halpern, Aaron -- Li, Peter W -- Sutton, Granger G -- Nadeau, Joe -- Salzberg, Steven L -- Holt, Robert A -- Kodira, Chinnappa D -- Lu, Fu -- Chen, Lin -- Deng, Zuoming -- Evangelista, Carlos C -- Gan, Weiniu -- Heiman, Thomas J -- Li, Jiayin -- Li, Zhenya -- Merkulov, Gennady V -- Milshina, Natalia V -- Naik, Ashwinikumar K -- Qi, Rong -- Shue, Bixiong Chris -- Wang, Aihui -- Wang, Jian -- Wang, Xin -- Yan, Xianghe -- Ye, Jane -- Yooseph, Shibu -- Zhao, Qi -- Zheng, Liansheng -- Zhu, Shiaoping C -- Biddick, Kendra -- Bolanos, Randall -- Delcher, Arthur L -- Dew, Ian M -- Fasulo, Daniel -- Flanigan, Michael J -- Huson, Daniel H -- Kravitz, Saul A -- Miller, Jason R -- Mobarry, Clark M -- Reinert, Knut -- Remington, Karin A -- Zhang, Qing -- Zheng, Xiangqun H -- Nusskern, Deborah R -- Lai, Zhongwu -- Lei, Yiding -- Zhong, Wenyan -- Yao, Alison -- Guan, Ping -- Ji, Rui-Ru -- Gu, Zhiping -- Wang, Zhen-Yuan -- Zhong, Fei -- Xiao, Chunlin -- Chiang, Chia-Chien -- Yandell, Mark -- Wortman, Jennifer R -- Amanatides, Peter G -- Hladun, Suzanne L -- Pratts, Eric C -- Johnson, Jeffery E -- Dodson, Kristina L -- Woodford, Kerry J -- Evans, Cheryl A -- Gropman, Barry -- Rusch, Douglas B -- Venter, Eli -- Wang, Mei -- Smith, Thomas J -- Houck, Jarrett T -- Tompkins, Donald E -- Haynes, Charles -- Jacob, Debbie -- Chin, Soo H -- Allen, David R -- Dahlke, Carl E -- Sanders, Robert -- Li, Kelvin -- Liu, Xiangjun -- Levitsky, Alexander A -- Majoros, William H -- Chen, Quan -- Xia, Ashley C -- Lopez, John R -- Donnelly, Michael T -- Newman, Matthew H -- Glodek, Anna -- Kraft, Cheryl L -- Nodell, Marc -- Ali, Feroze -- An, Hui-Jin -- Baldwin-Pitts, Danita -- Beeson, Karen Y -- Cai, Shuang -- Carnes, Mark -- Carver, Amy -- Caulk, Parris M -- Center, Angela -- Chen, Yen-Hui -- Cheng, Ming-Lai -- Coyne, My D -- Crowder, Michelle -- Danaher, Steven -- Davenport, Lionel B -- Desilets, Raymond -- Dietz, Susanne M -- Doup, Lisa -- Dullaghan, Patrick -- Ferriera, Steven -- Fosler, Carl R -- Gire, Harold C -- Gluecksmann, Andres -- Gocayne, Jeannine D -- Gray, Jonathan -- Hart, Brit -- Haynes, Jason -- Hoover, Jeffery -- Howland, Tim -- Ibegwam, Chinyere -- Jalali, Mena -- Johns, David -- Kline, Leslie -- Ma, Daniel S -- MacCawley, Steven -- Magoon, Anand -- Mann, Felecia -- May, David -- McIntosh, Tina C -- Mehta, Somil -- Moy, Linda -- Moy, Mee C -- Murphy, Brian J -- Murphy, Sean D -- Nelson, Keith A -- Nuri, Zubeda -- Parker, Kimberly A -- Prudhomme, Alexandre C -- Puri, Vinita N -- Qureshi, Hina -- Raley, John C -- Reardon, Matthew S -- Regier, Megan A -- Rogers, Yu-Hui C -- Romblad, Deanna L -- Schutz, Jakob -- Scott, John L -- Scott, Richard -- Sitter, Cynthia D -- Smallwood, Michella -- Sprague, Arlan C -- Stewart, Erin -- Strong, Renee V -- Suh, Ellen -- Sylvester, Karena -- Thomas, Reginald -- Tint, Ni Ni -- Tsonis, Christopher -- Wang, Gary -- Wang, George -- Williams, Monica S -- Williams, Sherita M -- Windsor, Sandra M -- Wolfe, Keriellen -- Wu, Mitchell M -- Zaveri, Jayshree -- Chaturvedi, Kabir -- Gabrielian, Andrei E -- Ke, Zhaoxi -- Sun, Jingtao -- Subramanian, Gangadharan -- Venter, J Craig -- Pfannkoch, Cynthia M -- Barnstead, Mary -- Stephenson, Lisa D -- New York, N.Y. -- Science. 2002 May 31;296(5573):1661-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA. richard.mural@celera.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12040188" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Composition ; Chromosomes/*genetics ; Chromosomes, Human/genetics ; Computational Biology ; Conserved Sequence ; Databases, Nucleic Acid ; Evolution, Molecular ; Genes ; Genetic Markers ; *Genome ; *Genome, Human ; Genomics ; Humans ; Mice ; Mice, Inbred A/genetics ; Mice, Inbred DBA/genetics ; Mice, Inbred Strains/*genetics ; Molecular Sequence Data ; Physical Chromosome Mapping ; Proteins/chemistry/genetics ; Sequence Alignment ; *Sequence Analysis, DNA ; Species Specificity ; *Synteny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-01-28
    Description: The spread of H5N1 avian influenza viruses (AIVs) from China to Europe has raised global concern about their potential to infect humans and cause a pandemic. In spite of their substantial threat to human health, remarkably little AIV whole-genome information is available. We report here a preliminary analysis of the first large-scale sequencing of AIVs, including 2196 AIV genes and 169 complete genomes. We combine this new information with public AIV data to identify new gene alleles, persistent genotypes, compensatory mutations, and a potential virulence determinant.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Obenauer, John C -- Denson, Jackie -- Mehta, Perdeep K -- Su, Xiaoping -- Mukatira, Suraj -- Finkelstein, David B -- Xu, Xiequn -- Wang, Jinhua -- Ma, Jing -- Fan, Yiping -- Rakestraw, Karen M -- Webster, Robert G -- Hoffmann, Erich -- Krauss, Scott -- Zheng, Jie -- Zhang, Ziwei -- Naeve, Clayton W -- AI95357/AI/NIAID NIH HHS/ -- CA 21765/CA/NCI NIH HHS/ -- R01 GM061739/GM/NIGMS NIH HHS/ -- R01 GM069916/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Mar 17;311(5767):1576-80. Epub 2006 Jan 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16439620" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds/virology ; Computational Biology ; *Genes, Viral ; Genome, Viral ; Humans ; Influenza A Virus, H1N1 Subtype/genetics ; Influenza A Virus, H2N2 Subtype/genetics ; Influenza A Virus, H3N2 Subtype/genetics ; Influenza A Virus, H3N8 Subtype/genetics ; Influenza A Virus, H5N1 Subtype/chemistry/*genetics/pathogenicity ; Influenza A Virus, H5N2 Subtype/genetics ; Influenza A Virus, H7N7 Subtype/genetics ; Influenza A Virus, H9N2 Subtype/genetics ; Influenza A virus/chemistry/*genetics/isolation & purification/pathogenicity ; Influenza in Birds/virology ; Influenza, Human/virology ; Molecular Sequence Data ; Mutation ; Phylogeny ; RNA, Viral/genetics ; Reassortant Viruses/genetics ; Sequence Analysis, DNA ; Viral Nonstructural Proteins/*chemistry/genetics ; Viral Proteins/chemistry/genetics ; Virulence Factors/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-04-05
    Description: Whereas gamma-band neuronal oscillations clearly appear integral to visual attention, the role of lower-frequency oscillations is still being debated. Mounting evidence indicates that a key functional property of these oscillations is the rhythmic shifting of excitability in local neuronal ensembles. Here, we show that when attended stimuli are in a rhythmic stream, delta-band oscillations in the primary visual cortex entrain to the rhythm of the stream, resulting in increased response gain for task-relevant events and decreased reaction times. Because of hierarchical cross-frequency coupling, delta phase also determines momentary power in higher-frequency activity. These instrumental functions of low-frequency oscillations support a conceptual framework that integrates numerous earlier findings.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lakatos, Peter -- Karmos, George -- Mehta, Ashesh D -- Ulbert, Istvan -- Schroeder, Charles E -- MH060358/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2008 Apr 4;320(5872):110-3. doi: 10.1126/science.1154735.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cognitive Neuroscience and Schizophrenia Program, Nathan Kline Institute, Orangeburg, NY 10962, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18388295" target="_blank"〉PubMed〈/a〉
    Keywords: Acoustic Stimulation ; Animals ; Attention/*physiology ; Cues ; Delta Rhythm ; Electroencephalography ; Electrophysiology ; Macaca fascicularis ; Male ; Neurons/*physiology ; Periodicity ; Photic Stimulation ; Reaction Time ; Visual Cortex/*physiology ; Visual Perception
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-05-04
    Description: The hippocampal cognitive map is thought to be driven by distal visual cues and self-motion cues. However, other sensory cues also influence place cells. Hence, we measured rat hippocampal activity in virtual reality (VR), where only distal visual and nonvestibular self-motion cues provided spatial information, and in the real world (RW). In VR, place cells showed robust spatial selectivity; however, only 20% were track active, compared with 45% in the RW. This indicates that distal visual and nonvestibular self-motion cues are sufficient to provide selectivity, but vestibular and other sensory cues present in RW are necessary to fully activate the place-cell population. In addition, bidirectional cells preferentially encoded distance along the track in VR, while encoding absolute position in RW. Taken together, these results suggest the differential contributions of these sensory cues in shaping the hippocampal population code. Theta frequency was reduced, and its speed dependence was abolished in VR, but phase precession was unaffected, constraining mechanisms governing both hippocampal theta oscillations and temporal coding. These results reveal cooperative and competitive interactions between sensory cues for control over hippocampal spatiotemporal selectivity and theta rhythm.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049564/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049564/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ravassard, Pascal -- Kees, Ashley -- Willers, Bernard -- Ho, David -- Aharoni, Daniel -- Cushman, Jesse -- Aghajan, Zahra M -- Mehta, Mayank R -- 5R01MH092925-02/MH/NIMH NIH HHS/ -- R01 MH092925/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2013 Jun 14;340(6138):1342-6. doi: 10.1126/science.1232655. Epub 2013 May 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉W. M. Keck Center for Neurophysics, Integrative Center for Learning and Memory, and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23641063" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Mapping ; Cues ; Hippocampus/*physiology ; Male ; Rats ; Rats, Inbred LEC ; *Space Perception ; *Spatial Behavior ; Theta Rhythm ; *Time Perception ; User-Computer Interface
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1997-01-10
    Description: Resveratrol, a phytoalexin found in grapes and other food products, was purified and shown to have cancer chemopreventive activity in assays representing three major stages of carcinogenesis. Resveratrol was found to act as an antioxidant and antimutagen and to induce phase II drug-metabolizing enzymes (anti-initiation activity); it mediated anti-inflammatory effects and inhibited cyclooxygenase and hydroperoxidase functions (antipromotion activity); and it induced human promyelocytic leukemia cell differentiation (antiprogression activity). In addition, it inhibited the development of preneoplastic lesions in carcinogen-treated mouse mammary glands in culture and inhibited tumorigenesis in a mouse skin cancer model. These data suggest that resveratrol, a common constituent of the human diet, merits investigation as a potential cancer chemopreventive agent in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jang, M -- Cai, L -- Udeani, G O -- Slowing, K V -- Thomas, C F -- Beecher, C W -- Fong, H H -- Farnsworth, N R -- Kinghorn, A D -- Mehta, R G -- Moon, R C -- Pezzuto, J M -- P01 CA48112/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Jan 10;275(5297):218-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8985016" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Inflammatory Agents, Non-Steroidal/pharmacology/therapeutic use ; Anticarcinogenic Agents/*pharmacology/therapeutic use ; Antimutagenic Agents/pharmacology ; Carcinogens ; Cell Differentiation/drug effects ; Cyclooxygenase 1 ; Cyclooxygenase Inhibitors/pharmacology/therapeutic use ; Female ; Fruit/*chemistry ; Humans ; Inflammation/drug therapy ; Isoenzymes/metabolism ; Mammary Neoplasms, Experimental/chemically induced/prevention & control ; Membrane Proteins ; Mice ; Neoplasms, Experimental/*prevention & control ; Peroxidases/antagonists & inhibitors ; Precancerous Conditions/prevention & control ; Prostaglandin-Endoperoxide Synthases/metabolism ; Rats ; Rats, Wistar ; Skin Neoplasms/chemically induced/prevention & control ; Stilbenes/*pharmacology/therapeutic use ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-01-11
    Description: Receptor desensitization is a universal mechanism to turn off a biological response; in this process, the ability of a physiological trigger to activate a cell is lost despite the continued presence of the stimulus. Receptor desensitization of G-protein-coupled receptors involves uncoupling of the receptor from its G-protein or second-messenger pathway followed by receptor internalization. G-protein-coupled cysteinyl leukotriene type I (CysLT1) receptors regulate immune-cell function and CysLT1 receptors are an established therapeutic target for allergies, including asthma. Desensitization of CysLT1 receptors arises predominantly from protein-kinase-C-dependent phosphorylation of three serine residues in the receptor carboxy terminus. Physiological concentrations of the receptor agonist leukotriene C(4) (LTC(4)) evoke repetitive cytoplasmic Ca(2+) oscillations, reflecting regenerative Ca(2+) release from stores, which is sustained by Ca(2+) entry through store-operated calcium-release-activated calcium (CRAC) channels. CRAC channels are tightly linked to expression of the transcription factor c-fos, a regulator of numerous genes important to cell growth and development. Here we show that abolishing leukotriene receptor desensitization suppresses agonist-driven gene expression in a rat cell line. Mechanistically, stimulation of non-desensitizing receptors evoked prolonged inositol-trisphosphate-mediated Ca(2+) release, which led to accelerated Ca(2+)-dependent slow inactivation of CRAC channels and a subsequent loss of excitation-transcription coupling. Hence, rather than serving to turn off a biological response, reversible desensitization of a Ca(2+) mobilizing receptor acts as an 'on' switch, sustaining long-term signalling in the immune system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272478/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272478/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ng, Siaw-Wei -- Bakowski, Daniel -- Nelson, Charmaine -- Mehta, Ravi -- Almeyda, Robert -- Bates, Grant -- Parekh, Anant B -- G1000813/Medical Research Council/United Kingdom -- G1000813(95533)/Medical Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2012 Jan 9;482(7383):111-5. doi: 10.1038/nature10731.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22230957" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism ; *Calcium Signaling/drug effects ; Cell Line ; Cell Line, Tumor ; Cytoplasm/*metabolism ; *Down-Regulation ; *Gene Expression Regulation/drug effects ; Humans ; Leukotriene C4/pharmacology ; Mast Cells ; Phosphoserine/metabolism ; Protein Kinase C/metabolism ; Proto-Oncogene Proteins c-fos/metabolism ; Rats ; Receptors, Leukotriene/*metabolism ; Thapsigargin/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-11-16
    Description: RNA interference (RNAi) is a conserved mechanism in which small interfering RNAs (siRNAs) guide the degradation of cognate RNAs, but also promote heterochromatin assembly at repetitive DNA elements such as centromeric repeats. However, the full extent of RNAi functions and its endogenous targets have not been explored. Here we show that, in the fission yeast Schizosaccharomyces pombe, RNAi and heterochromatin factors cooperate to silence diverse loci, including sexual differentiation genes, genes encoding transmembrane proteins, and retrotransposons that are also targeted by the exosome RNA degradation machinery. In the absence of the exosome, transcripts are processed preferentially by the RNAi machinery, revealing siRNA clusters and a corresponding increase in heterochromatin modifications across large domains containing genes and retrotransposons. We show that the generation of siRNAs and heterochromatin assembly by RNAi is triggered by a mechanism involving the canonical poly(A) polymerase Pla1 and an associated RNA surveillance factor Red1, which also activate the exosome. Notably, siRNA production and heterochromatin modifications at these target loci are regulated by environmental growth conditions, and by developmental signals that induce gene expression during sexual differentiation. Our analyses uncover an interaction between RNAi and the exosome that is conserved in Drosophila, and show that differentiation signals modulate RNAi silencing to regulate developmental genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554839/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554839/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamanaka, Soichiro -- Mehta, Sameet -- Reyes-Turcu, Francisca E -- Zhuang, Fanglei -- Fuchs, Ryan T -- Rong, Yikang -- Robb, Gregory B -- Grewal, Shiv I S -- Z01 BC010523-04/Intramural NIH HHS/ -- Z01 BC010523-05/Intramural NIH HHS/ -- ZIA BC010523-07/Intramural NIH HHS/ -- ZIA BC010523-09/Intramural NIH HHS/ -- ZIA BC010523-10/Intramural NIH HHS/ -- ZIA BC011208-01/Intramural NIH HHS/ -- ZIA BC011208-02/Intramural NIH HHS/ -- ZIA BC011208-03/Intramural NIH HHS/ -- ZIA BC011208-04/Intramural NIH HHS/ -- England -- Nature. 2013 Jan 24;493(7433):557-60. doi: 10.1038/nature11716. Epub 2012 Nov 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23151475" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Drosophila melanogaster/genetics ; Exome/genetics ; Gene Expression Regulation, Fungal/*genetics ; Genes, Fungal/*genetics ; Heterochromatin/genetics ; Multigene Family/genetics ; Polynucleotide Adenylyltransferase/genetics ; *RNA Interference ; RNA Stability/genetics ; RNA, Fungal/genetics ; RNA, Small Interfering/genetics ; Retroelements/*genetics ; Schizosaccharomyces/cytology/enzymology/*genetics/*growth & development ; Schizosaccharomyces pombe Proteins/genetics/metabolism ; Sex Differentiation/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-04-18
    Description: The Caenorhabditis elegans von Hippel-Lindau tumor suppressor homolog VHL-1 is a cullin E3 ubiquitin ligase that negatively regulates the hypoxic response by promoting ubiquitination and degradation of the hypoxic response transcription factor HIF-1. Here, we report that loss of VHL-1 significantly increased life span and enhanced resistance to polyglutamine and beta-amyloid toxicity. Deletion of HIF-1 was epistatic to VHL-1, indicating that HIF-1 acts downstream of VHL-1 to modulate aging and proteotoxicity. VHL-1 and HIF-1 control longevity by a mechanism distinct from both dietary restriction and insulin-like signaling. These findings define VHL-1 and the hypoxic response as an alternative longevity and protein homeostasis pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737476/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737476/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mehta, Ranjana -- Steinkraus, Katherine A -- Sutphin, George L -- Ramos, Fresnida J -- Shamieh, Lara S -- Huh, Alexander -- Davis, Christina -- Chandler-Brown, Devon -- Kaeberlein, Matt -- 1R01AG031108-01/AG/NIA NIH HHS/ -- P30AG013280/AG/NIA NIH HHS/ -- R01 AG031108/AG/NIA NIH HHS/ -- R01 AG031108-01A1/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2009 May 29;324(5931):1196-8. doi: 10.1126/science.1173507. Epub 2009 Apr 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19372390" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*physiology ; Amyloid beta-Peptides/toxicity ; Animals ; Caenorhabditis elegans/genetics/metabolism/*physiology ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Caloric Restriction ; Cullin Proteins/genetics/*metabolism ; Female ; Fertility ; Gene Expression Regulation ; Homeostasis ; Insulin/metabolism ; Longevity/physiology ; Male ; Models, Animal ; Oxygen/*physiology ; Peptides/toxicity ; Proteasome Endopeptidase Complex/*metabolism ; RNA Interference ; Receptor, Insulin/genetics/metabolism ; Signal Transduction ; Transcription Factors/genetics/*metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-01-02
    Description: Motivation for reward drives adaptive behaviors, whereas impairment of reward perception and experience (anhedonia) can contribute to psychiatric diseases, including depression and schizophrenia. We sought to test the hypothesis that the medial prefrontal cortex (mPFC) controls interactions among specific subcortical regions that govern hedonic responses. By using optogenetic functional magnetic resonance imaging to locally manipulate but globally visualize neural activity in rats, we found that dopamine neuron stimulation drives striatal activity, whereas locally increased mPFC excitability reduces this striatal response and inhibits the behavioral drive for dopaminergic stimulation. This chronic mPFC overactivity also stably suppresses natural reward-motivated behaviors and induces specific new brainwide functional interactions, which predict the degree of anhedonia in individuals. These findings describe a mechanism by which mPFC modulates expression of reward-seeking behavior, by regulating the dynamical interactions between specific distant subcortical regions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4772156/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4772156/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ferenczi, Emily A -- Zalocusky, Kelly A -- Liston, Conor -- Grosenick, Logan -- Warden, Melissa R -- Amatya, Debha -- Katovich, Kiefer -- Mehta, Hershel -- Patenaude, Brian -- Ramakrishnan, Charu -- Kalanithi, Paul -- Etkin, Amit -- Knutson, Brian -- Glover, Gary H -- Deisseroth, Karl -- 1F31MH105151_01/MH/NIMH NIH HHS/ -- P41 EB015891/EB/NIBIB NIH HHS/ -- R00 MH097822/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Jan 1;351(6268):aac9698. doi: 10.1126/science.aac9698.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. Neurosciences Program, Stanford University, Stanford, CA 94305, USA. ; Brain Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA. ; Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA. ; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. ; Department of Psychology, Stanford University, Stanford, CA 94305, USA. ; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA. ; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA. ; Department of Radiology, Stanford University, Stanford, CA, 94305, USA. ; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA. Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA. deissero@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26722001" target="_blank"〉PubMed〈/a〉
    Keywords: Anhedonia/*physiology ; Animals ; Brain Mapping ; Corpus Striatum/cytology/drug effects/*physiology ; Depressive Disorder/physiopathology ; Dopamine/pharmacology ; Dopaminergic Neurons/drug effects/*physiology ; Female ; Magnetic Resonance Imaging ; Male ; Mesencephalon/cytology/drug effects/physiology ; *Motivation ; Nerve Net/physiology ; Oxygen/blood ; Prefrontal Cortex/cytology/drug effects/*physiology ; Rats ; Rats, Inbred LEC ; Rats, Sprague-Dawley ; *Reward ; Schizophrenia/physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1978-03-31
    Description: A sustained-release device for use in ethanol dependence studies in mice is described. The Silastic device, dubbed SERT (sustained ethanol release tube), holds 0.35 milliliter of 95 percent ethanol (by volume) and is implanted under the skin of the back where it releases ethanol for up to 12 hours, with no observable tissue damage. The device may be adaptable to the release of other volatile liquids or drugs, in other animals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Erickson, C K -- Koch, K I -- Mehta, C S -- McGinity, J W -- New York, N.Y. -- Science. 1978 Mar 31;199(4336):1457-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/564551" target="_blank"〉PubMed〈/a〉
    Keywords: Alcoholic Intoxication/etiology ; Alcoholism/*etiology ; Animals ; *Disease Models, Animal ; Drug Administration Schedule ; Drug Implants ; Drug Tolerance ; Ethanol/*administration & dosage ; Humans ; Mice ; Silicone Elastomers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...