ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-07-03
    Description: On activation by receptors, the ubiquitously expressed class IA isoforms (p110alpha and p110beta) of phosphatidylinositol-3-OH kinase (PI(3)K) generate lipid second messengers, which initiate multiple signal transduction cascades. Recent studies have demonstrated specific functions for p110alpha in growth factor and insulin signalling. To probe for distinct functions of p110beta, we constructed conditional knockout mice. Here we show that ablation of p110beta in the livers of the resulting mice leads to impaired insulin sensitivity and glucose homeostasis, while having little effect on phosphorylation of Akt, suggesting the involvement of a kinase-independent role of p110beta in insulin metabolic action. Using established mouse embryonic fibroblasts, we found that removal of p110beta also had little effect on Akt phosphorylation in response to stimulation by insulin and epidermal growth factor, but resulted in retarded cell proliferation. Reconstitution of p110beta-null cells with a wild-type or kinase-dead allele of p110beta demonstrated that p110beta possesses kinase-independent functions in regulating cell proliferation and trafficking. However, the kinase activity of p110beta was required for G-protein-coupled receptor signalling triggered by lysophosphatidic acid and had a function in oncogenic transformation. Most strikingly, in an animal model of prostate tumour formation induced by Pten loss, ablation of p110beta (also known as Pik3cb), but not that of p110alpha (also known as Pik3ca), impeded tumorigenesis with a concomitant diminution of Akt phosphorylation. Taken together, our findings demonstrate both kinase-dependent and kinase-independent functions for p110beta, and strongly indicate the kinase-dependent functions of p110beta as a promising target in cancer therapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2750091/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2750091/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jia, Shidong -- Liu, Zhenning -- Zhang, Sen -- Liu, Pixu -- Zhang, Lei -- Lee, Sang Hyun -- Zhang, Jing -- Signoretti, Sabina -- Loda, Massimo -- Roberts, Thomas M -- Zhao, Jean J -- P01 CA050661/CA/NCI NIH HHS/ -- P01 CA050661-200001/CA/NCI NIH HHS/ -- P01 CA089021/CA/NCI NIH HHS/ -- P01 CA089021-06A1/CA/NCI NIH HHS/ -- P50 CA089393/CA/NCI NIH HHS/ -- P50 CA089393-08S1/CA/NCI NIH HHS/ -- P50 CA090381/CA/NCI NIH HHS/ -- P50 CA090381-05/CA/NCI NIH HHS/ -- R01 CA030002/CA/NCI NIH HHS/ -- R01 CA030002-27/CA/NCI NIH HHS/ -- R01 CA134502/CA/NCI NIH HHS/ -- R01 CA134502-01/CA/NCI NIH HHS/ -- England -- Nature. 2008 Aug 7;454(7205):776-9. doi: 10.1038/nature07091. Epub 2008 Jun 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18594509" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Proliferation/drug effects ; *Cell Transformation, Neoplastic ; Epidermal Growth Factor/pharmacology ; Fibroblasts/cytology ; Glucose/*metabolism ; Glucose Intolerance/enzymology/genetics ; Homeostasis ; Humans ; Insulin/*metabolism/pharmacology ; Insulin Resistance/genetics ; Liver/enzymology/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; PTEN Phosphohydrolase/deficiency/genetics ; Phosphatidylinositol 3-Kinases/deficiency/genetics/*metabolism ; Phosphorylation/drug effects ; Prostatic Neoplasms/enzymology/genetics/pathology ; Proto-Oncogene Proteins c-akt/metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1992-09-04
    Description: Mitogen-activated protein (MAP) kinases are 42- and 44-kD serine-threonine protein kinases that are activated by tyrosine and threonine phosphorylation in cells stimulated with mitogens and growth factors. MAP kinase and the protein kinase that activates it (MAP kinase kinase) were constitutively activated in NIH 3T3 cells infected with viruses containing either of two oncogenic forms (p35EC12, p3722W) of the c-Raf-1 protein kinase. The v-Raf proteins purified from cells infected with EC12 or 22W viruses activated MAP kinase kinase from skeletal muscle in vitro. Furthermore, a bacterially expressed v-Raf fusion protein (glutathione S-transferase-p3722W) also activated MAP kinase kinase in vitro. These findings suggest that one function of c-Raf-1 in mitogenic signaling is to phosphorylate and activate MAP kinase kinase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dent, P -- Haser, W -- Haystead, T A -- Vincent, L A -- Roberts, T M -- Sturgill, T W -- CA50661/CA/NCI NIH HHS/ -- DK41077/DK/NIDDK NIH HHS/ -- HD24926/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1992 Sep 4;257(5075):1404-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, University of Virginia, Charlottesville 22908.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1326789" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Cell Line ; Cell Line, Transformed ; Enzyme Activation/drug effects ; Immunosorbent Techniques ; Mice ; Mitogen-Activated Protein Kinase Kinases ; Muscles/enzymology ; Oncogene Proteins v-raf ; Phosphorylation ; Protein Kinases/*metabolism ; Proto-Oncogene Proteins/pharmacology ; Proto-Oncogene Proteins c-raf ; Recombinant Fusion Proteins/pharmacology ; Retroviridae Proteins, Oncogenic/genetics/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1991-05-03
    Description: The molecular cloning of the complementary DNA coding for a 90-kilodalton fragment of tensin, an actin-binding component of focal contacts and other submembraneous cytoskeletal structures, is reported. The derived amino acid sequence revealed the presence of a Src homology 2 (SH2) domain. This domain is shared by a number of signal transduction proteins including nonreceptor tyrosine kinases such as Abl, Fps, Src, and Src family members, the transforming protein Crk, phospholipase C-gamma 1, PI-3 (phosphatidylinositol) kinase, and guanosine triphosphatase-activating protein (GAP). Like the SH2 domain found in Src, Crk, and Abl, the SH2 domain of tensin bound specifically to a number of phosphotyrosine-containing proteins from v-src-transformed cells. Tensin was also found to be phosphorylated on tyrosine residues. These findings suggest that by possessing both actin-binding and phosphotyrosine-binding activities and being itself a target for tyrosine kinases, tensin may link signal transduction pathways with the cytoskeleton.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, S -- Lu, M L -- Lo, S H -- Lin, S -- Butler, J A -- Druker, B J -- Roberts, T M -- An, Q -- Chen, L B -- GM 22289/GM/NIGMS NIH HHS/ -- GM 38318/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 May 3;252(5006):712-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cellular and Molecular Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1708917" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*metabolism ; Amino Acid Sequence ; Animals ; Binding Sites ; Chick Embryo ; Cloning, Molecular ; Cytoskeletal Proteins/*chemistry/genetics/metabolism ; DNA/genetics ; Fluorescent Antibody Technique ; Immunoblotting ; *Microfilament Proteins ; Molecular Sequence Data ; Peptide Fragments/genetics ; Phosphotyrosine ; Protein-Tyrosine Kinases/genetics ; Sequence Homology, Nucleic Acid ; Signal Transduction ; Tyrosine/analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1997-06-20
    Description: The avian sarcoma virus 16 (ASV 16) is a retrovirus that induces hemangiosarcomas in chickens. Analysis of the ASV 16 genome revealed that it encodes an oncogene that is derived from the cellular gene for the catalytic subunit of phosphoinositide 3-kinase (PI 3-kinase). The gene is referred to as v-p3k, and like its cellular counterpart c-p3k, it is a potent transforming gene in cultured chicken embryo fibroblasts (CEFs). The products of the viral and cellular p3k genes have PI 3-kinase activity. CEFs transformed with either gene showed elevated levels of phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate and activation of Akt kinase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, H W -- Aoki, M -- Fruman, D -- Auger, K R -- Bellacosa, A -- Tsichlis, P N -- Cantley, L C -- Roberts, T M -- Vogt, P K -- CA 42564/CA/NCI NIH HHS/ -- GM 41890/GM/NIGMS NIH HHS/ -- R01 GM041890/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Jun 20;276(5320):1848-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Experimental Medicine, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9188528" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Avian Sarcoma Viruses/*genetics/physiology ; *Cell Transformation, Neoplastic ; *Cell Transformation, Viral ; Cells, Cultured ; Chick Embryo ; Chickens ; Cloning, Molecular ; Enzyme Activation ; Genes, Viral ; Hemangiosarcoma/genetics/virology ; Molecular Sequence Data ; *Oncogenes ; Phosphatidylinositol 3-Kinases ; Phosphatidylinositol Phosphates/metabolism ; Phosphotransferases (Alcohol Group Acceptor)/*genetics/metabolism ; Platelet-Derived Growth Factor/pharmacology ; Protein-Serine-Threonine Kinases/metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-akt ; Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2003-11-25
    Description: Cells crawl by coupling protrusion of their leading edge with retraction of their cell body. Protrusion is generated by the polymerization and bundling of filaments, but the mechanism of retraction is less clear. We have reconstituted retraction in vitro by adding Yersinia tyrosine phosphatase to the major sperm protein-based motility apparatus assembled from Ascaris sperm extracts. Retraction in vitro parallels that observed in vivo and is generated primarily by disassembly and rearrangement of the cytoskeleton. Therefore, cytoskeletal dynamics alone, unassisted by conventional motors, are able to generate both of these central components of amoeboid locomotion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miao, Long -- Vanderlinde, Orion -- Stewart, Murray -- Roberts, Thomas M -- R37GM29994/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Nov 21;302(5649):1405-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14631043" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/physiology ; Adenosine Triphosphate/metabolism/pharmacology ; Animals ; Ascaris suum/*cytology/physiology ; Biopolymers ; Cell Adhesion ; Cell Extracts ; Cell Movement/*physiology ; Cytoplasmic Vesicles/physiology ; Cytoskeleton/*physiology ; Helminth Proteins/chemistry/metabolism/*physiology ; Hydrogen-Ion Concentration ; Male ; Myosins/physiology ; Phosphorylation ; Protein Tyrosine Phosphatases/metabolism ; Pseudopodia/physiology ; Spermatozoa/physiology/ultrastructure ; Yersinia enterocolitica/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-07-14
    Description: X-linked mental retardation (XLMR) is a complex human disease that causes intellectual disability. Causal mutations have been found in approximately 90 X-linked genes; however, molecular and biological functions of many of these genetically defined XLMR genes remain unknown. PHF8 (PHD (plant homeo domain) finger protein 8) is a JmjC domain-containing protein and its mutations have been found in patients with XLMR and craniofacial deformities. Here we provide multiple lines of evidence establishing PHF8 as the first mono-methyl histone H4 lysine 20 (H4K20me1) demethylase, with additional activities towards histone H3K9me1 and me2. PHF8 is located around the transcription start sites (TSS) of approximately 7,000 RefSeq genes and in gene bodies and intergenic regions (non-TSS). PHF8 depletion resulted in upregulation of H4K20me1 and H3K9me1 at the TSS and H3K9me2 in the non-TSS sites, respectively, demonstrating differential substrate specificities at different target locations. PHF8 positively regulates gene expression, which is dependent on its H3K4me3-binding PHD and catalytic domains. Importantly, patient mutations significantly compromised PHF8 catalytic function. PHF8 regulates cell survival in the zebrafish brain and jaw development, thus providing a potentially relevant biological context for understanding the clinical symptoms associated with PHF8 patients. Lastly, genetic and molecular evidence supports a model whereby PHF8 regulates zebrafish neuronal cell survival and jaw development in part by directly regulating the expression of the homeodomain transcription factor MSX1/MSXB, which functions downstream of multiple signalling and developmental pathways. Our findings indicate that an imbalance of histone methylation dynamics has a critical role in XLMR.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072215/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072215/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qi, Hank H -- Sarkissian, Madathia -- Hu, Gang-Qing -- Wang, Zhibin -- Bhattacharjee, Arindam -- Gordon, D Benjamin -- Gonzales, Michelle -- Lan, Fei -- Ongusaha, Pat P -- Huarte, Maite -- Yaghi, Nasser K -- Lim, Huijun -- Garcia, Benjamin A -- Brizuela, Leonardo -- Zhao, Keji -- Roberts, Thomas M -- Shi, Yang -- GM 071004/GM/NIGMS NIH HHS/ -- NCI118487/PHS HHS/ -- P01CA50661/CA/NCI NIH HHS/ -- R01 GM071004/GM/NIGMS NIH HHS/ -- R01 GM071004-07/GM/NIGMS NIH HHS/ -- T32 CA09031-32/CA/NCI NIH HHS/ -- T32 NS007473/NS/NINDS NIH HHS/ -- England -- Nature. 2010 Jul 22;466(7305):503-7. doi: 10.1038/nature09261. Epub 2010 Jul 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20622853" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biocatalysis ; Brain/cytology/*embryology/*enzymology ; Catalytic Domain ; Cell Cycle ; Cell Line, Tumor ; Cell Survival ; DNA, Intergenic/genetics ; Gene Expression Regulation ; Head/*embryology ; Histone Demethylases/genetics/*metabolism ; Histones/chemistry/*metabolism ; Homeodomain Proteins/genetics ; Humans ; Jaw/cytology/embryology ; Lysine/metabolism ; Mental Retardation, X-Linked/enzymology/genetics ; Methylation ; Neurons/cytology/enzymology ; Promoter Regions, Genetic ; Transcription Factors/deficiency/genetics/*metabolism ; Transcription Initiation Site ; Zebrafish/*embryology/metabolism ; Zebrafish Proteins/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1994-07-22
    Description: To carry out its transformation function, the middle tumor antigen (MT) of murine polyomavirus associates with a number of cellular proteins involved in regulation of cell proliferation, including pp60c-Src, phosphatidylinositol 3-kinase, protein phosphatase 2A, Src homologous and collagen protein and growth factor receptor-binding protein 2. Here, two additional MT-associated proteins were identified as members of the 14-3-3 family of proteins. Yeast homologs of 14-3-3 proteins have recently been shown to play a role in the timing of mitosis. Thus, regulation of 14-3-3 protein function by MT may contribute to the development of neoplasia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pallas, D C -- Fu, H -- Haehnel, L C -- Weller, W -- Collier, R J -- Roberts, T M -- CA30002/CA/NCI NIH HHS/ -- CA45285/CA/NCI NIH HHS/ -- CA50661/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1994 Jul 22;265(5171):535-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cellular and Molecular Biology, Dana-Farber Cancer Institute, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8036498" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; 3T3 Cells ; Adenosine Diphosphate Ribose/metabolism ; Amino Acid Sequence ; Animals ; Antigens, Polyomavirus Transforming/immunology/*metabolism ; *Cell Division ; Cell Line ; *Cell Transformation, Neoplastic ; *Cell Transformation, Viral ; Humans ; Immune Sera ; Mice ; Molecular Sequence Data ; Nerve Tissue Proteins/chemistry/isolation & purification/*metabolism ; Poly(ADP-ribose) Polymerases/metabolism ; Precipitin Tests ; *Tyrosine 3-Monooxygenase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1994-10-07
    Description: Members of a family of highly conserved proteins, termed 14-3-3 proteins, were found by several experimental approaches to associate with Raf-1, a central component of a key signal transduction pathway. Optimal complex formation required the amino-terminal regulatory domain of Raf-1. The association of 14-3-3 proteins and Raf-1 was not substantially affected by the activation state of Raf.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fu, H -- Xia, K -- Pallas, D C -- Cui, C -- Conroy, K -- Narsimhan, R P -- Mamon, H -- Collier, R J -- Roberts, T M -- AI22021/AI/NIAID NIH HHS/ -- CA57327/CA/NCI NIH HHS/ -- HD24926/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1994 Oct 7;266(5182):126-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939632" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; 3T3 Cells ; Animals ; Binding Sites ; Cell Line ; Enzyme Activation ; Humans ; Mice ; Nerve Tissue Proteins/metabolism ; Phosphorylation ; Poly(ADP-ribose) Polymerases/metabolism ; Protein-Serine-Threonine Kinases/*metabolism ; Proteins/chemistry/*metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-raf ; *Signal Transduction ; Spodoptera ; *Tyrosine 3-Monooxygenase ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1988-02-26
    Description: Patch clamp recordings of whole-cell and single channel currents revealed the presence of two voltage-sensitive calcium channel types in the membrane of 3T3 fibroblasts. The two calcium channel types were identified by their unitary properties and pharmacological sensitivities. Both calcium channel types were present in all control 3T3 cells, but one type was selectively suppressed in 3T3 cells that had been transformed by activated c-H-ras, EJ-ras, v-fms, or polyoma middle T oncogenes. The presence of voltage-sensitive calcium channels in these nonexcitable cells and the control of their functional expression by transforming oncogenes raises questions about their role in the control of calcium-sensitive processes such as cell motility, cytoskeletal organization, and cell growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, C F -- Corbley, M J -- Roberts, T M -- Hess, P -- CA21082/CA/NCI NIH HHS/ -- HL37124/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1988 Feb 26;239(4843):1024-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2449730" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism ; Calcium Channel Agonists ; Cell Division ; Cell Line ; Cell Line, Transformed ; *Cell Transformation, Neoplastic ; Electric Conductivity ; Fibroblasts/*physiology ; Ion Channels/drug effects/*physiology ; Kinetics ; Membrane Potentials ; Mice ; Nicotinic Acids/pharmacology ; Oncogenes ; *Oxadiazoles
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...