ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Animals  (46)
  • Launch Vehicles and Launch Operations  (22)
  • 2005-2009  (51)
  • 1990-1994  (17)
  • 1
    Publication Date: 2019-07-13
    Description: This slide presentation reviews the current status of the launch vehicles associated with the Constellation Program. These are the Ares I and the Ares V. An overview of the Ares launch vehicles is included. The presentation stresses that the major criteria for the Ares I launcher is the safety of the crew, and the presentation reviews the various features that are designed to assure that aim. The Ares I vehicle is being built on a foundation of proven technologies, and the Ares V will give NASA unprecedented performance and payload volume that can enable a range of future missions. The CDs contain videos of scenes from various activities surrounding the design, construction and testing of the vehicles.
    Keywords: Launch Vehicles and Launch Operations
    Type: Human Space Flight Review; Jul 29, 2009; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-10-25
    Description: BAX is a pro-apoptotic protein of the BCL-2 family that is stationed in the cytosol until activated by a diversity of stress stimuli to induce cell death. Anti-apoptotic proteins such as BCL-2 counteract BAX-mediated cell death. Although an interaction site that confers survival functionality has been defined for anti-apoptotic proteins, an activation site has not been identified for BAX, rendering its explicit trigger mechanism unknown. We previously developed stabilized alpha-helix of BCL-2 domains (SAHBs) that directly initiate BAX-mediated mitochondrial apoptosis. Here we demonstrate by NMR analysis that BIM SAHB binds BAX at an interaction site that is distinct from the canonical binding groove characterized for anti-apoptotic proteins. The specificity of the human BIM-SAHB-BAX interaction is highlighted by point mutagenesis that disrupts functional activity, confirming that BAX activation is initiated at this novel structural location. Thus, we have now defined a BAX interaction site for direct activation, establishing a new target for therapeutic modulation of apoptosis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597110/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597110/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gavathiotis, Evripidis -- Suzuki, Motoshi -- Davis, Marguerite L -- Pitter, Kenneth -- Bird, Gregory H -- Katz, Samuel G -- Tu, Ho-Chou -- Kim, Hyungjin -- Cheng, Emily H-Y -- Tjandra, Nico -- Walensky, Loren D -- 5P01CA92625/CA/NCI NIH HHS/ -- 5R01CA125562/CA/NCI NIH HHS/ -- 5R01CA50239/CA/NCI NIH HHS/ -- K99 HL095929/HL/NHLBI NIH HHS/ -- K99 HL095929-01A1/HL/NHLBI NIH HHS/ -- K99 HL095929-02/HL/NHLBI NIH HHS/ -- R00 HL095929/HL/NHLBI NIH HHS/ -- R01 CA050239/CA/NCI NIH HHS/ -- R01 CA125562/CA/NCI NIH HHS/ -- R01 CA125562-02/CA/NCI NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2008 Oct 23;455(7216):1076-81. doi: 10.1038/nature07396.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatric Oncology and the Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18948948" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apoptosis ; Apoptosis Regulatory Proteins/chemistry/metabolism ; BH3 Interacting Domain Death Agonist Protein/metabolism ; Cell Line ; *Gene Expression Regulation ; Humans ; Membrane Proteins/chemistry/metabolism ; Mice ; Mutagenesis, Site-Directed ; Mutation/genetics ; Nuclear Magnetic Resonance, Biomolecular ; Protein Binding ; Proto-Oncogene Proteins/chemistry/metabolism ; Sequence Alignment ; bcl-2-Associated X Protein/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-12-19
    Description: Palmitoylation regulates diverse aspects of neuronal protein trafficking and function. Here a global characterization of rat neural palmitoyl-proteomes identifies most of the known neural palmitoyl proteins-68 in total, plus more than 200 new palmitoyl-protein candidates, with further testing confirming palmitoylation for 21 of these candidates. The new palmitoyl proteins include neurotransmitter receptors, transporters, adhesion molecules, scaffolding proteins, as well as SNAREs and other vesicular trafficking proteins. Of particular interest is the finding of palmitoylation for a brain-specific Cdc42 splice variant. The palmitoylated Cdc42 isoform (Cdc42-palm) differs from the canonical, prenylated form (Cdc42-prenyl), both with regard to localization and function: Cdc42-palm concentrates in dendritic spines and has a special role in inducing these post-synaptic structures. Furthermore, assessing palmitoylation dynamics in drug-induced activity models identifies rapidly induced changes for Cdc42 as well as for other synaptic palmitoyl proteins, suggesting that palmitoylation may participate broadly in the activity-driven changes that shape synapse morphology and function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2610860/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2610860/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Rujun -- Wan, Junmei -- Arstikaitis, Pamela -- Takahashi, Hideto -- Huang, Kun -- Bailey, Aaron O -- Thompson, James X -- Roth, Amy F -- Drisdel, Renaldo C -- Mastro, Ryan -- Green, William N -- Yates, John R 3rd -- Davis, Nicholas G -- El-Husseini, Alaa -- DA019695/DA/NIDA NIH HHS/ -- DA13602/DA/NIDA NIH HHS/ -- GM65525/GM/NIGMS NIH HHS/ -- NS043782/NS/NINDS NIH HHS/ -- P01 DA019695/DA/NIDA NIH HHS/ -- P01 DA019695-01A20001/DA/NIDA NIH HHS/ -- P01 DA019695-020001/DA/NIDA NIH HHS/ -- R01 DA013602/DA/NIDA NIH HHS/ -- R01 DA013602-01/DA/NIDA NIH HHS/ -- R01 DA013602-02/DA/NIDA NIH HHS/ -- R01 DA013602-02S1/DA/NIDA NIH HHS/ -- R01 DA013602-02S2/DA/NIDA NIH HHS/ -- R01 DA013602-03/DA/NIDA NIH HHS/ -- R01 DA013602-04/DA/NIDA NIH HHS/ -- R01 DA013602-05/DA/NIDA NIH HHS/ -- R01 NS032693/NS/NINDS NIH HHS/ -- R01 NS032693-08/NS/NINDS NIH HHS/ -- R01 NS043782/NS/NINDS NIH HHS/ -- R01 NS043782-01A2/NS/NINDS NIH HHS/ -- R01 NS043782-02/NS/NINDS NIH HHS/ -- R01 NS043782-03/NS/NINDS NIH HHS/ -- R01 NS043782-04/NS/NINDS NIH HHS/ -- R01 NS043782-05/NS/NINDS NIH HHS/ -- R56 NS043782/NS/NINDS NIH HHS/ -- R56 NS043782-06/NS/NINDS NIH HHS/ -- RR011823/RR/NCRR NIH HHS/ -- England -- Nature. 2008 Dec 18;456(7224):904-9. doi: 10.1038/nature07605.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, Brain Research Centre, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada. rkang@interchange.ubc.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19092927" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing/genetics ; Animals ; Cells, Cultured ; Cerebral Cortex/cytology/embryology ; Dendrites/metabolism ; *Lipoylation ; Models, Neurological ; Neurons/*metabolism ; Organ Specificity ; Proteome/metabolism ; *Proteomics ; Rats ; Synapses/*metabolism ; cdc42 GTP-Binding Protein/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-03-26
    Description: Tribolium castaneum is a member of the most species-rich eukaryotic order, a powerful model organism for the study of generalized insect development, and an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved the ability to interact with a diverse chemical environment, as shown by large expansions in odorant and gustatory receptors, as well as P450 and other detoxification enzymes. Development in Tribolium is more representative of other insects than is Drosophila, a fact reflected in gene content and function. For example, Tribolium has retained more ancestral genes involved in cell-cell communication than Drosophila, some being expressed in the growth zone crucial for axial elongation in short-germ development. Systemic RNA interference in T. castaneum functions differently from that in Caenorhabditis elegans, but nevertheless offers similar power for the elucidation of gene function and identification of targets for selective insect control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tribolium Genome Sequencing Consortium -- Richards, Stephen -- Gibbs, Richard A -- Weinstock, George M -- Brown, Susan J -- Denell, Robin -- Beeman, Richard W -- Gibbs, Richard -- Bucher, Gregor -- Friedrich, Markus -- Grimmelikhuijzen, Cornelis J P -- Klingler, Martin -- Lorenzen, Marce -- Roth, Siegfried -- Schroder, Reinhard -- Tautz, Diethard -- Zdobnov, Evgeny M -- Muzny, Donna -- Attaway, Tony -- Bell, Stephanie -- Buhay, Christian J -- Chandrabose, Mimi N -- Chavez, Dean -- Clerk-Blankenburg, Kerstin P -- Cree, Andrew -- Dao, Marvin -- Davis, Clay -- Chacko, Joseph -- Dinh, Huyen -- Dugan-Rocha, Shannon -- Fowler, Gerald -- Garner, Toni T -- Garnes, Jeffrey -- Gnirke, Andreas -- Hawes, Alica -- Hernandez, Judith -- Hines, Sandra -- Holder, Michael -- Hume, Jennifer -- Jhangiani, Shalini N -- Joshi, Vandita -- Khan, Ziad Mohid -- Jackson, LaRonda -- Kovar, Christie -- Kowis, Andrea -- Lee, Sandra -- Lewis, Lora R -- Margolis, Jon -- Morgan, Margaret -- Nazareth, Lynne V -- Nguyen, Ngoc -- Okwuonu, Geoffrey -- Parker, David -- Ruiz, San-Juana -- Santibanez, Jireh -- Savard, Joel -- Scherer, Steven E -- Schneider, Brian -- Sodergren, Erica -- Vattahil, Selina -- Villasana, Donna -- White, Courtney S -- Wright, Rita -- Park, Yoonseong -- Lord, Jeff -- Oppert, Brenda -- Brown, Susan -- Wang, Liangjiang -- Weinstock, George -- Liu, Yue -- Worley, Kim -- Elsik, Christine G -- Reese, Justin T -- Elhaik, Eran -- Landan, Giddy -- Graur, Dan -- Arensburger, Peter -- Atkinson, Peter -- Beidler, Jim -- Demuth, Jeffery P -- Drury, Douglas W -- Du, Yu-Zhou -- Fujiwara, Haruhiko -- Maselli, Vincenza -- Osanai, Mizuko -- Robertson, Hugh M -- Tu, Zhijian -- Wang, Jian-jun -- Wang, Suzhi -- Song, Henry -- Zhang, Lan -- Werner, Doreen -- Stanke, Mario -- Morgenstern, Burkhard -- Solovyev, Victor -- Kosarev, Peter -- Brown, Garth -- Chen, Hsiu-Chuan -- Ermolaeva, Olga -- Hlavina, Wratko -- Kapustin, Yuri -- Kiryutin, Boris -- Kitts, Paul -- Maglott, Donna -- Pruitt, Kim -- Sapojnikov, Victor -- Souvorov, Alexandre -- Mackey, Aaron J -- Waterhouse, Robert M -- Wyder, Stefan -- Kriventseva, Evgenia V -- Kadowaki, Tatsuhiko -- Bork, Peer -- Aranda, Manuel -- Bao, Riyue -- Beermann, Anke -- Berns, Nicola -- Bolognesi, Renata -- Bonneton, Francois -- Bopp, Daniel -- Butts, Thomas -- Chaumot, Arnaud -- Denell, Robin E -- Ferrier, David E K -- Gordon, Cassondra M -- Jindra, Marek -- Lan, Que -- Lattorff, H Michael G -- Laudet, Vincent -- von Levetsow, Cornelia -- Liu, Zhenyi -- Lutz, Rebekka -- Lynch, Jeremy A -- da Fonseca, Rodrigo Nunes -- Posnien, Nico -- Reuter, Rolf -- Schinko, Johannes B -- Schmitt, Christian -- Schoppmeier, Michael -- Shippy, Teresa D -- Simonnet, Franck -- Marques-Souza, Henrique -- Tomoyasu, Yoshinori -- Trauner, Jochen -- Van der Zee, Maurijn -- Vervoort, Michel -- Wittkopp, Nadine -- Wimmer, Ernst A -- Yang, Xiaoyun -- Jones, Andrew K -- Sattelle, David B -- Ebert, Paul R -- Nelson, David -- Scott, Jeffrey G -- Muthukrishnan, Subbaratnam -- Kramer, Karl J -- Arakane, Yasuyuki -- Zhu, Qingsong -- Hogenkamp, David -- Dixit, Radhika -- Jiang, Haobo -- Zou, Zhen -- Marshall, Jeremy -- Elpidina, Elena -- Vinokurov, Konstantin -- Oppert, Cris -- Evans, Jay -- Lu, Zhiqiang -- Zhao, Picheng -- Sumathipala, Niranji -- Altincicek, Boran -- Vilcinskas, Andreas -- Williams, Michael -- Hultmark, Dan -- Hetru, Charles -- Hauser, Frank -- Cazzamali, Giuseppe -- Williamson, Michael -- Li, Bin -- Tanaka, Yoshiaki -- Predel, Reinhard -- Neupert, Susanne -- Schachtner, Joachim -- Verleyen, Peter -- Raible, Florian -- Walden, Kimberly K O -- Angeli, Sergio -- Foret, Sylvain -- Schuetz, Stefan -- Maleszka, Ryszard -- Miller, Sherry C -- Grossmann, Daniela -- BBS/B/12067/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBS/B/12067/2/Biotechnology and Biological Sciences Research Council/United Kingdom -- R01 GM058634/GM/NIGMS NIH HHS/ -- R01 HD029594/HD/NICHD NIH HHS/ -- R01 HD029594-16/HD/NICHD NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2008 Apr 24;452(7190):949-55. doi: 10.1038/nature06784. Epub 2008 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. stephenr@bcm.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18362917" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Composition ; Body Patterning/genetics ; Cytochrome P-450 Enzyme System/genetics ; DNA Transposable Elements/genetics ; Genes, Insect/*genetics ; Genome, Insect/*genetics ; Growth and Development/genetics ; Humans ; Insecticides/pharmacology ; Neurotransmitter Agents/genetics ; Oogenesis/genetics ; Phylogeny ; Proteome/genetics ; RNA Interference ; Receptors, G-Protein-Coupled/genetics ; Receptors, Odorant/genetics ; Repetitive Sequences, Nucleic Acid/genetics ; Taste/genetics ; Telomere/genetics ; Tribolium/classification/embryology/*genetics/physiology ; Vision, Ocular/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-06-13
    Description: MicroRNAs (miRNAs) are small non-coding RNAs that participate in the spatiotemporal regulation of messenger RNA and protein synthesis. Aberrant miRNA expression leads to developmental abnormalities and diseases, such as cardiovascular disorders and cancer; however, the stimuli and processes regulating miRNA biogenesis are largely unknown. The transforming growth factor beta (TGF-beta) and bone morphogenetic protein (BMP) family of growth factors orchestrates fundamental biological processes in development and in the homeostasis of adult tissues, including the vasculature. Here we show that induction of a contractile phenotype in human vascular smooth muscle cells by TGF-beta and BMPs is mediated by miR-21. miR-21 downregulates PDCD4 (programmed cell death 4), which in turn acts as a negative regulator of smooth muscle contractile genes. Surprisingly, TGF-beta and BMP signalling promotes a rapid increase in expression of mature miR-21 through a post-transcriptional step, promoting the processing of primary transcripts of miR-21 (pri-miR-21) into precursor miR-21 (pre-miR-21) by the DROSHA (also known as RNASEN) complex. TGF-beta- and BMP-specific SMAD signal transducers are recruited to pri-miR-21 in a complex with the RNA helicase p68 (also known as DDX5), a component of the DROSHA microprocessor complex. The shared cofactor SMAD4 is not required for this process. Thus, regulation of miRNA biogenesis by ligand-specific SMAD proteins is critical for control of the vascular smooth muscle cell phenotype and potentially for SMAD4-independent responses mediated by the TGF-beta and BMP signalling pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2653422/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2653422/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, Brandi N -- Hilyard, Aaron C -- Lagna, Giorgio -- Hata, Akiko -- HD042149/HD/NICHD NIH HHS/ -- HL082854/HL/NHLBI NIH HHS/ -- HL086572/HL/NHLBI NIH HHS/ -- R01 HD042149/HD/NICHD NIH HHS/ -- R01 HD042149-05/HD/NICHD NIH HHS/ -- R01 HL082854/HL/NHLBI NIH HHS/ -- R01 HL082854-03/HL/NHLBI NIH HHS/ -- R21 HL086572/HL/NHLBI NIH HHS/ -- R21 HL086572-02/HL/NHLBI NIH HHS/ -- England -- Nature. 2008 Jul 3;454(7200):56-61. doi: 10.1038/nature07086. Epub 2008 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18548003" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis Regulatory Proteins/metabolism ; Bone Morphogenetic Protein 4 ; Bone Morphogenetic Proteins/metabolism/pharmacology ; Breast Neoplasms/genetics ; Cell Line ; Cercopithecus aethiops ; DEAD-box RNA Helicases/metabolism ; Gene Expression Regulation/drug effects ; Humans ; Ligands ; Mice ; MicroRNAs/biosynthesis/*metabolism ; Muscle, Smooth/metabolism ; Phenotype ; Protein Binding ; *RNA Processing, Post-Transcriptional ; RNA-Binding Proteins/metabolism ; Ribonuclease III/*metabolism ; Signal Transduction/drug effects ; Smad Proteins/*metabolism ; Transforming Growth Factor beta/metabolism/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-08-01
    Description: Percolation theory is most commonly associated with the slow flow of liquid through a porous medium, with applications to the physical sciences. Epidemiological applications have been anticipated for disease systems where the host is a plant or volume of soil, and hence is fixed in space. However, no natural examples have been reported. The central question of interest in percolation theory, the possibility of an infinite connected cluster, corresponds in infectious disease to a positive probability of an epidemic. Archived records of plague (infection with Yersinia pestis) in populations of great gerbils (Rhombomys opimus) in Kazakhstan have been used to show that epizootics only occur when more than about 0.33 of the burrow systems built by the host are occupied by family groups. The underlying mechanism for this abundance threshold is unknown. Here we present evidence that it is a percolation threshold, which arises from the difference in scale between the movements that transport infectious fleas between family groups and the vast size of contiguous landscapes colonized by gerbils. Conventional theory predicts that abundance thresholds for the spread of infectious disease arise when transmission between hosts is density dependent such that the basic reproduction number (R(0)) increases with abundance, attaining 1 at the threshold. Percolation thresholds, however, are separate, spatially explicit thresholds that indicate long-range connectivity in a system and do not coincide with R(0) = 1. Abundance thresholds are the theoretical basis for attempts to manage infectious disease by reducing the abundance of susceptibles, including vaccination and the culling of wildlife. This first natural example of a percolation threshold in a disease system invites a re-appraisal of other invasion thresholds, such as those for epidemic viral infections in African lions (Panthera leo), and of other disease systems such as bovine tuberculosis (caused by Mycobacterium bovis) in badgers (Meles meles).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, S -- Trapman, P -- Leirs, H -- Begon, M -- Heesterbeek, J A P -- England -- Nature. 2008 Jul 31;454(7204):634-7. doi: 10.1038/nature07053.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Theoretical Epidemiology, Faculty of Veterinary Medicine, University of Utrecht, Yalelaan 7, 3584 CL Utrecht, The Netherlands. S.A.Davis@uu.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18668107" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Disease Outbreaks ; Gerbillinae/microbiology/parasitology ; Kazakhstan/epidemiology ; *Models, Biological ; Plague/epidemiology/parasitology/*transmission/veterinary ; Population Density ; Population Dynamics ; Rodent Diseases/epidemiology/parasitology/transmission ; Siphonaptera/microbiology/physiology ; Yersinia pestis/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-06-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tomchik, Seth M -- Davis, Ronald L -- England -- Nature. 2008 Jun 26;453(7199):1192-4. doi: 10.1038/4531192a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18580936" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Drosophila melanogaster/enzymology/*physiology ; Humans ; Locomotion/physiology ; Memory/*physiology ; Models, Neurological ; Neurons/enzymology/metabolism ; Orientation/*physiology ; Ribosomal Protein S6 Kinases, 90-kDa/genetics/metabolism ; Space Perception/*physiology ; gamma-Aminobutyric Acid/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-11-13
    Description: Direct inhibition of transcription factor complexes remains a central challenge in the discipline of ligand discovery. In general, these proteins lack surface involutions suitable for high-affinity binding by small molecules. Here we report the design of synthetic, cell-permeable, stabilized alpha-helical peptides that target a critical protein-protein interface in the NOTCH transactivation complex. We demonstrate that direct, high-affinity binding of the hydrocarbon-stapled peptide SAHM1 prevents assembly of the active transcriptional complex. Inappropriate NOTCH activation is directly implicated in the pathogenesis of several disease states, including T-cell acute lymphoblastic leukaemia (T-ALL). The treatment of leukaemic cells with SAHM1 results in genome-wide suppression of NOTCH-activated genes. Direct antagonism of the NOTCH transcriptional program causes potent, NOTCH-specific anti-proliferative effects in cultured cells and in a mouse model of NOTCH1-driven T-ALL.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951323/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951323/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moellering, Raymond E -- Cornejo, Melanie -- Davis, Tina N -- Del Bianco, Cristina -- Aster, Jon C -- Blacklow, Stephen C -- Kung, Andrew L -- Gilliland, D Gary -- Verdine, Gregory L -- Bradner, James E -- 5T32GM007598/GM/NIGMS NIH HHS/ -- N01-CO-12400/CO/NCI NIH HHS/ -- P01 CA119070/CA/NCI NIH HHS/ -- P01 CA119070-049001/CA/NCI NIH HHS/ -- R01 CA092433/CA/NCI NIH HHS/ -- R01 CA092433-06A2/CA/NCI NIH HHS/ -- R56 CA092433/CA/NCI NIH HHS/ -- R56 CA092433-06A1/CA/NCI NIH HHS/ -- T32 GM007598/GM/NIGMS NIH HHS/ -- T32 GM007598-30/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Nov 12;462(7270):182-8. doi: 10.1038/nature08543.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19907488" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding, Competitive ; Cell Line, Tumor ; Cell Membrane Permeability ; Cell Proliferation/drug effects ; DNA-Binding Proteins/chemistry/metabolism ; Disease Models, Animal ; Drosophila Proteins/chemistry ; Gene Expression Regulation, Neoplastic/drug effects ; Genome/drug effects/genetics ; Humans ; Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism ; Mice ; Models, Molecular ; Nuclear Proteins/chemistry ; Peptides/chemical synthesis/chemistry/metabolism/*pharmacology ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy/genetics/pathology ; Protein Binding/drug effects ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptor, Notch1/*antagonists & inhibitors/chemistry/metabolism ; Signal Transduction/drug effects ; Substrate Specificity ; Transcription Factors/chemistry/metabolism ; Transcriptional Activation/*drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1990-08-10
    Description: The interaction of the T cell receptor for antigen (TCR) with its antigen-major histocompatibility complex ligand is difficult to study because both are cell surface multimers. The TCR consists of two chains (alpha and beta) that are complexed to the five or more nonpolymorphic CD3 polypeptides. A soluble form of the TCR was engineered by replacing the carboxyl termini of alpha and beta with signal sequences from lipid-linked proteins, making them susceptible to enzymatic cleavage. In this manner, TCR heterodimers can be expressed independently of the CD3 polypeptides and in significant quantities (0.5 milligram per week). This technique seems generalizable to biochemical and structural studies of many other cell surface molecules as well.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, A Y -- Devaux, B -- Green, A -- Sagerstrom, C -- Elliott, J F -- Davis, M M -- New York, N.Y. -- Science. 1990 Aug 10;249(4969):677-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Stanford University School of Medicine, CA 94305-5402.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1696397" target="_blank"〉PubMed〈/a〉
    Keywords: Alkaline Phosphatase/genetics ; Amino Acid Sequence ; Animals ; Antigens, CD3 ; Antigens, CD55 ; Antigens, Differentiation, T-Lymphocyte/genetics ; Cell Line ; Complement Inactivator Proteins/genetics ; Female ; Humans ; Macromolecular Substances ; Membrane Proteins/genetics ; Molecular Sequence Data ; Placenta/enzymology ; Pregnancy ; Protein Sorting Signals/genetics ; Receptors, Antigen, T-Cell/*genetics ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1991-03-08
    Description: The two mouse genes, En-1 and En-2, that are homologs of the Drosophila segmentation gene engrailed, show overlapping spatially restricted patterns of expression in the neural tube during embryogenesis, suggestive of a role in regional specification. Mice homozygous for a targeted mutation that deletes the homeobox were viable and showed no obvious defects in embryonic development. This may be due to functional redundancy of En-2 and the related En-1 gene product during embryogenesis. Consistent with this hypothesis, the mutant mice showed abnormal foliation in the adult cerebellum, where En-2, and not En-1, is normally expressed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joyner, A L -- Herrup, K -- Auerbach, B A -- Davis, C A -- Rossant, J -- HD25334/HD/NICHD NIH HHS/ -- NS18381/NS/NINDS NIH HHS/ -- NS20591/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1991 Mar 8;251(4998):1239-43.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1672471" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst ; Cell Line ; Cerebellum/*anatomy & histology/embryology/pathology ; Chimera ; *Chromosome Deletion ; Female ; *Genes, Homeobox ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Nervous System/embryology ; Phenotype
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...