ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-06-24
    Description: Author(s): P. Talou, B. Becker, T. Kawano, M. B. Chadwick, and Y. Danon Prompt fission neutrons following the thermal and 0.5 MeV neutron-induced fission reaction of 239 Pu are calculated using a Monte Carlo approach to the evaporation of the excited fission fragments. Exclusive data such as the multiplicity distribution P ( ν ) , the average multiplicity as a function of fr... [Phys. Rev. C 83, 064612] Published Thu Jun 23, 2011
    Keywords: Nuclear Reactions
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-05-02
    Description: Author(s): S. Kunieda, R. C. Haight, T. Kawano, M. B. Chadwick, S. M. Sterbenz, F. B. Bateman, O. A. Wasson, S. M. Grimes, P. Maier-Komor, H. Vonach, T. Fukahori, and Y. Watanabe Neutron reactions that produce α particles have been investigated experimentally and analyzed by reaction model calculations for incident neutron energies from threshold to 150 MeV on elemental chromium and iron. The cross sections were measured at the Los Alamos Neutron Science Center by direct obs... [Phys. Rev. C 85, 054602] Published Tue May 01, 2012
    Keywords: Nuclear Reactions
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-17
    Description: Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McGlynn, Shawn E -- Chadwick, Grayson L -- Kempes, Christopher P -- Orphan, Victoria J -- England -- Nature. 2015 Oct 22;526(7574):531-5. doi: 10.1038/nature15512. Epub 2015 Sep 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA. ; Exobiology Branch, National Aeronautics and Space Administration Ames Research Center, Moffett Field, California 94035, USA. ; Control and Dynamical Systems, California Institute of Technology, Pasadena, California 91125, USA. ; SETI Institute, Mountain View, California 94034, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26375009" target="_blank"〉PubMed〈/a〉
    Keywords: Anaerobiosis ; Archaea/cytology/*metabolism ; Cytochromes/genetics/metabolism/ultrastructure ; Deltaproteobacteria/cytology/*metabolism ; Diffusion ; Electron Transport ; Genome, Archaeal/genetics ; Genome, Bacterial/genetics ; Heme/metabolism ; Methane/*metabolism ; Microbiota/physiology ; Models, Biological ; Molecular Sequence Data ; *Single-Cell Analysis ; Sulfates/metabolism ; *Symbiosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-02-26
    Description: The oxidation of methane with sulfate is an important microbial metabolism in the global carbon cycle. In marine methane seeps, this process is mediated by consortia of anaerobic methanotrophic archaea (ANME) that live in syntrophy with sulfate-reducing bacteria (SRB). The underlying interdependencies within this uncultured symbiotic partnership are poorly understood. We used a combination of rate measurements and single-cell stable isotope probing to demonstrate that ANME in deep-sea sediments can be catabolically and anabolically decoupled from their syntrophic SRB partners using soluble artificial oxidants. The ANME still sustain high rates of methane oxidation in the absence of sulfate as the terminal oxidant, lending support to the hypothesis that interspecies extracellular electron transfer is the syntrophic mechanism for the anaerobic oxidation of methane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scheller, Silvan -- Yu, Hang -- Chadwick, Grayson L -- McGlynn, Shawn E -- Orphan, Victoria J -- New York, N.Y. -- Science. 2016 Feb 12;351(6274):703-7. doi: 10.1126/science.aad7154.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912857" target="_blank"〉PubMed〈/a〉
    Keywords: Anaerobiosis ; *Carbon Cycle ; Electron Transport ; Geologic Sediments/microbiology ; Methane/*metabolism ; Methanosarcinales/classification/genetics/*metabolism ; Molecular Sequence Data ; Oxidation-Reduction ; Phylogeny ; RNA, Archaeal/classification/genetics ; Seawater/microbiology ; Sulfates/*metabolism ; Sulfur-Reducing Bacteria/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-12-28
    Description: Author(s): P. Talou, T. Kawano, I. Stetcu, J. P. Lestone, E. McKigney, and M. B. Chadwick The emission of prompt fission γ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and γ -ray evaporations from fully accelerated fission fragments are … [Phys. Rev. C 94, 064613] Published Thu Dec 22, 2016
    Keywords: Nuclear Reactions
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...