ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 27 (1979), S. 75-82 
    ISSN: 1432-0827
    Keywords: Proteoglycans ; Hydroxyapatite ; Amorphous calcium phosphate ; Nucleation ; Calcification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary Well-characterized bovine nasal proteoglycan A1 fraction (aggregate) and proteoglycan D1 fraction (subunit) have been shown to be effective inhibitors of hydroxyapatite (HA) formation in two in vitro test systems: (a) the transformation of amorphous calcium phosphate (ACP) to crystalline HA, and, (b) the direct precipitation of HA from low-concentration calcium phosphate solutions. A1 or D1 in solution slowed the transformation kinetics in system (a) without affecting the time to the onset of conversion. In system (b), A1 or D1 in solution increased the time to the onset of HA formation without affecting the HA formation kinetics. In both test systems A1 was a more effective inhibitor than D1, although the difference was not great. In both systems the inhibitory effect was proportional to the A1 or D1 solution concentration. The action of solutions of low and high molecular weight neutral dextrans on both test systems showed that high molecular weight and/or extended spatial molecular conformation has a much stronger correlation with inhibitory ability than solution viscosity. Proteoglycans have been implicated as playing a role in regulating biological mineralization particularly in the epiphyseal growth plate. Our study suggests that just enzymatic cleavage of aggregate into subunit is not sufficient to allow mineralization to occur, since we find that D1 itself is a potent inhibitor of HA formation. Further degradation and/or removal of D1 appears to be necessary for calcification to take place.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 33 (1981), S. 111-117 
    ISSN: 1432-0827
    Keywords: Calcium-deficient hydroxyapatite ; Amorphous calcium phosphate ; Bone ; Radial distribution function ; Carbonate apatite
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary When amorphous calcium phosphate (ACP) was transformed to crystalline hydroxyapatite (HA) in a series of aqueous slurry concentrations ranging from low to high, the higher slurry concentrations produced more Ca-deficient HA as measured by Ca/P ratio and heat-produced pyrophosphate. We feel that the excess solution phosphate produced in the higher slurry transformations results in lower Ca/P ratio HA. It has been suggested that an ACP is the precursor to bone apatite. Regulation of the in vivo ACP slurry concentration could then control the stoichiometry and, therefore, the metabolic activity of bone apatite. X-ray radial distribution function (RDF) analyses showed that CO 3 2− substitution in HA creates far greater structural distortions than do Ca deficiencies. The latter, however, do produce small, but observable, structural distortions when compared to stoichiometric HA. It now seems clear that the RDF of bone apatite can be modeled by a synthetic, Ca-deficient, CO 3 2− -containing HA.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 23 (1977), S. 245-250 
    ISSN: 1432-0827
    Keywords: Stabilization ; Amorphous calcium phosphate ; Mitochondria ; Mg and ATP ; Nucleation poisoning
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary A synergistic effect has been demonstrated when magnesium and adenosine triphosphate (ATP) are used together in solution to delay the conversion of a slurry of amorphous calcium phosphate (ACP) to crystalline hydroxyapatite (HA). Conversion is delayed in some instances more than 10 times as long as with either ATP or Mg alone. In all experiments conversion did not begin until ATP in solution had decreased through hydrolysis to an undetectable level. The effect of Mg is to decrease substantially the rate at which ATP hydrolysis occurs. Once conversion began it proceeded more slowly in the presence of both Mg and ATP than with Mg or ATP alone. ATP was also found to prevent the formation of HA from metastable solutions of calcium and phosphate which did not contain any solid phase. Over the time period of these experiments, ATP hydrolyzed to a negligible extent in Tris-HCl buffer and in solutions containing Ca, PO4, and Ca plus PO4 ions. Hydrolysis of ATP does occur in the presence of ACP or HA, presumably by transphosphorylation on the surface of the solid calcium phosphate phase. It was concluded that ATP stabilized ACP, not by affecting its dissolution, but either by poisoning heteronuclear growth sites, or by poisoning the growth of embryonic HA nuclei (formed heterogeneously or homogeneously) before their critical size is reached, or by poisoning both. In the case of embryonic HA nuclei, the poisoned nuclei would go back into solution preventing HA crystal formation. In addition, it was found that the neutral Ca9(PO4)6 clusters, which are believed to be the basic structural unit of ACP, break down into individual Ca and PO4 ions when ACP dissolves in aqueous medium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...