ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2005-05-14
    Description: Polyglutamylation of tubulin has been implicated in several functions of microtubules, but the identification of the responsible enzyme(s) has been challenging. We found that the neuronal tubulin polyglutamylase is a protein complex containing a tubulin tyrosine ligase-like (TTLL) protein, TTLL1. TTLL1 is a member of a large family of proteins with a TTL homology domain, whose members could catalyze ligations of diverse amino acids to tubulins or other substrates. In the model protist Tetrahymena thermophila, two conserved types of polyglutamylases were characterized that differ in substrate preference and subcellular localization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janke, Carsten -- Rogowski, Krzysztof -- Wloga, Dorota -- Regnard, Catherine -- Kajava, Andrey V -- Strub, Jean-Marc -- Temurak, Nevzat -- van Dijk, Juliette -- Boucher, Dominique -- van Dorsselaer, Alain -- Suryavanshi, Swati -- Gaertig, Jacek -- Edde, Bernard -- New York, N.Y. -- Science. 2005 Jun 17;308(5729):1758-62. Epub 2005 May 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre de Recherches de Biochimie Macromoleculaire, CNRS, 34293 Montpellier, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15890843" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Binding Sites ; Brain/enzymology ; *Catalytic Domain ; Cilia/physiology ; Humans ; Mice ; Microtubules/metabolism ; Models, Molecular ; Molecular Sequence Data ; Movement ; Peptide Synthases/*chemistry/genetics/isolation & purification/*metabolism ; Phylogeny ; Polyglutamic Acid/*chemistry/genetics/isolation & purification/*metabolism ; Protein Conformation ; Protein Subunits/chemistry/isolation & purification/metabolism ; Recombinant Fusion Proteins/metabolism ; Substrate Specificity ; Tetrahymena thermophila/*enzymology/genetics/metabolism ; Tubulin/*chemistry/genetics/isolation & purification/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-12-18
    Description: Initiation and maintenance of mitosis require the activation of protein kinase cyclin B-Cdc2 and the inhibition of protein phosphatase 2A (PP2A), which, respectively, phosphorylate and dephosphorylate mitotic substrates. The protein kinase Greatwall (Gwl) is required to maintain mitosis through PP2A inhibition. We describe how Gwl activation results in PP2A inhibition. We identified cyclic adenosine monophosphate-regulated phosphoprotein 19 (Arpp19) and alpha-Endosulfine as two substrates of Gwl that, when phosphorylated by this kinase, associate with and inhibit PP2A, thus promoting mitotic entry. Conversely, in the absence of Gwl activity, Arpp19 and alpha-Endosulfine are dephosphorylated and lose their capacity to bind and inhibit PP2A. Although both proteins can inhibit PP2A, endogenous Arpp19, but not alpha-Endosulfine, is responsible for PP2A inhibition at mitotic entry in Xenopus egg extracts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gharbi-Ayachi, Aicha -- Labbe, Jean-Claude -- Burgess, Andrew -- Vigneron, Suzanne -- Strub, Jean-Marc -- Brioudes, Estelle -- Van-Dorsselaer, Alain -- Castro, Anna -- Lorca, Thierry -- New York, N.Y. -- Science. 2010 Dec 17;330(6011):1673-7. doi: 10.1126/science.1197048.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Universites Montpellier 2 et 1, Centre de Recherche de Biochimie Macromoleculaire, CNRS UMR 5237, IFR 122, 1919 Route de Mende, 34293 Montpellier cedex 5, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21164014" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; HeLa Cells ; Humans ; Interphase ; *Mitosis ; Molecular Sequence Data ; Oocytes ; Peptides/chemistry/*metabolism ; Phosphoproteins/chemistry/*metabolism ; Phosphorylation ; Protein Binding ; Protein Phosphatase 2/*antagonists & inhibitors/metabolism ; Protein-Serine-Threonine Kinases/*metabolism ; Proto-Oncogene Proteins c-mos/metabolism ; Recombinant Fusion Proteins/metabolism ; Xenopus Proteins/antagonists & inhibitors/*metabolism ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...