ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1996-07-05
    Description: When the Mg2+ ion in the catalytic center of Escherichia coli RNA polymerase (RNAP) is replaced with Fe2+, hydroxyl radicals are generated. In the promoter complex, such radicals cleave template DNA near the transcription start site, whereas the beta' subunit is cleaved at a conserved motif NADFDGD (Asn-Ala-Asp-Phe-Asp-Gly-Asp). Substitution of the three aspartate residues with alanine creates a dominant lethal mutation. The mutant RNAP is catalytically inactive but can bind promoters and form an open complex. The mutant fails to support Fe2+-induced cleavage of DNA or protein. Thus, the NAD-FDGD motif is involved in chelation of the active center Mg2+.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zaychikov, E -- Martin, E -- Denissova, L -- Kozlov, M -- Markovtsov, V -- Kashlev, M -- Heumann, H -- Nikiforov, V -- Goldfarb, A -- Mustaev, A -- New York, N.Y. -- Science. 1996 Jul 5;273(5271):107-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Limnological Institute, Russian Academy of Sciences, Irkutsk, Russia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8658176" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Aspartic Acid/metabolism ; Binding Sites ; DNA/metabolism ; DNA-Directed RNA Polymerases/*chemistry/genetics/*metabolism ; Dithiothreitol/pharmacology ; Electrophoresis, Polyacrylamide Gel ; Escherichia coli/*enzymology ; Ferrous Compounds/metabolism ; Hydroxyl Radical ; Magnesium/metabolism ; Molecular Sequence Data ; Mutagenesis ; Promoter Regions, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-03-01
    Description: The tubular structure of the endoplasmic reticulum (ER) appears to be generated by integral membrane proteins, the reticulons and a protein family consisting of DP1 in mammals and Yop1p in yeast. Here, individual members of these families were found to be sufficient to generate membrane tubules. When we purified yeast Yop1p and incorporated it into proteoliposomes, narrow tubules (approximately 15 to 17 nanometers in diameter) were generated. Tubule formation occurred with different lipids; required essentially only the central portion of the protein, including its two long hydrophobic segments; and was prevented by mutations that affected tubule formation in vivo. Tubules were also formed by reconstituted purified yeast Rtn1p. Tubules made in vitro were narrower than normal ER tubules, due to a higher concentration of tubule-inducing proteins. The shape and oligomerization of the "morphogenic" proteins could explain the formation of the tubular ER.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Junjie -- Shibata, Yoko -- Voss, Christiane -- Shemesh, Tom -- Li, Zongli -- Coughlin, Margaret -- Kozlov, Michael M -- Rapoport, Tom A -- Prinz, William A -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2008 Feb 29;319(5867):1247-50. doi: 10.1126/science.1153634.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18309084" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biopolymers/chemistry/metabolism ; COS Cells ; Cercopithecus aethiops ; Endoplasmic Reticulum/*chemistry/metabolism/*ultrastructure ; Hydrophobic and Hydrophilic Interactions ; Intracellular Membranes/chemistry/ultrastructure ; Lipid Bilayers ; Membrane Lipids/chemistry ; Membrane Proteins/*chemistry/*metabolism ; Membrane Transport Proteins/*chemistry/*metabolism ; Microscopy, Electron ; Models, Biological ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Proteolipids/chemistry ; Saccharomyces cerevisiae Proteins/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...