ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-03-08
    Description: Diffuse large B cell lymphoma (DLBCL) is the most common form of non-Hodgkin's lymphoma. In the least curable (ABC) subtype of DLBCL, survival of the malignant cells is dependent on constitutive activation of the nuclear factor-kappaB (NF-kappaB) signaling pathway. In normal B cells, antigen receptor-induced NF-kappaB activation requires CARD11, a cytoplasmic scaffolding protein. To determine whether CARD11 contributes to tumorigenesis, we sequenced the CARD11 gene in human DLBCL tumors. We detected missense mutations in 7 of 73 ABC DLBCL biopsies (9.6%), all within exons encoding the coiled-coil domain. Experimental introduction of CARD11 coiled-coil domain mutants into lymphoma cell lines resulted in constitutive NF-kappaB activation and enhanced NF-kappaB activity upon antigen receptor stimulation. These results demonstrate that CARD11 is a bona fide oncogenein DLBCL, providing a genetic rationale for the development of pharmacological inhibitors of the CARD11 pathway for DLBCL therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lenz, Georg -- Davis, R Eric -- Ngo, Vu N -- Lam, Lloyd -- George, Thaddeus C -- Wright, George W -- Dave, Sandeep S -- Zhao, Hong -- Xu, Weihong -- Rosenwald, Andreas -- Ott, German -- Muller-Hermelink, Hans Konrad -- Gascoyne, Randy D -- Connors, Joseph M -- Rimsza, Lisa M -- Campo, Elias -- Jaffe, Elaine S -- Delabie, Jan -- Smeland, Erlend B -- Fisher, Richard I -- Chan, Wing C -- Staudt, Louis M -- UO1-CA84967/CA/NCI NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2008 Mar 21;319(5870):1676-9. doi: 10.1126/science.1153629. Epub 2008 Mar 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Metabolism Branch, Division of Cancer Treatment and Diagnosis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18323416" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Apoptosis Regulatory Proteins/chemistry/*genetics/metabolism ; CARD Signaling Adaptor Proteins/chemistry/*genetics/metabolism ; Cell Line, Tumor ; Cytoplasm/metabolism ; Guanylate Cyclase/chemistry/*genetics/metabolism ; Humans ; I-kappa B Kinase/metabolism ; Jurkat Cells ; Lymphoma, Large B-Cell, Diffuse/*genetics ; Molecular Sequence Data ; *Mutation, Missense ; NF-kappa B ; *Oncogenes ; Protein Structure, Tertiary ; Receptors, Antigen, B-Cell/physiology ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-12-24
    Description: The activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) remains the least curable form of this malignancy despite recent advances in therapy. Constitutive nuclear factor (NF)-kappaB and JAK kinase signalling promotes malignant cell survival in these lymphomas, but the genetic basis for this signalling is incompletely understood. Here we describe the dependence of ABC DLBCLs on MYD88, an adaptor protein that mediates toll and interleukin (IL)-1 receptor signalling, and the discovery of highly recurrent oncogenic mutations affecting MYD88 in ABC DLBCL tumours. RNA interference screening revealed that MYD88 and the associated kinases IRAK1 and IRAK4 are essential for ABC DLBCL survival. High-throughput RNA resequencing uncovered MYD88 mutations in ABC DLBCL lines. Notably, 29% of ABC DLBCL tumours harboured the same amino acid substitution, L265P, in the MYD88 Toll/IL-1 receptor (TIR) domain at an evolutionarily invariant residue in its hydrophobic core. This mutation was rare or absent in other DLBCL subtypes and Burkitt's lymphoma, but was observed in 9% of mucosa-associated lymphoid tissue lymphomas. At a lower frequency, additional mutations were observed in the MYD88 TIR domain, occurring in both the ABC and germinal centre B-cell-like (GCB) DLBCL subtypes. Survival of ABC DLBCL cells bearing the L265P mutation was sustained by the mutant but not the wild-type MYD88 isoform, demonstrating that L265P is a gain-of-function driver mutation. The L265P mutant promoted cell survival by spontaneously assembling a protein complex containing IRAK1 and IRAK4, leading to IRAK4 kinase activity, IRAK1 phosphorylation, NF-kappaB signalling, JAK kinase activation of STAT3, and secretion of IL-6, IL-10 and interferon-beta. Hence, the MYD88 signalling pathway is integral to the pathogenesis of ABC DLBCL, supporting the development of inhibitors of IRAK4 kinase and other components of this pathway for the treatment of tumours bearing oncogenic MYD88 mutations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ngo, Vu N -- Young, Ryan M -- Schmitz, Roland -- Jhavar, Sameer -- Xiao, Wenming -- Lim, Kian-Huat -- Kohlhammer, Holger -- Xu, Weihong -- Yang, Yandan -- Zhao, Hong -- Shaffer, Arthur L -- Romesser, Paul -- Wright, George -- Powell, John -- Rosenwald, Andreas -- Muller-Hermelink, Hans Konrad -- Ott, German -- Gascoyne, Randy D -- Connors, Joseph M -- Rimsza, Lisa M -- Campo, Elias -- Jaffe, Elaine S -- Delabie, Jan -- Smeland, Erlend B -- Fisher, Richard I -- Braziel, Rita M -- Tubbs, Raymond R -- Cook, J R -- Weisenburger, Denny D -- Chan, Wing C -- Staudt, Louis M -- U01-CA 114778/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2011 Feb 3;470(7332):115-9. doi: 10.1038/nature09671. Epub 2010 Dec 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Metabolism Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21179087" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Burkitt Lymphoma/genetics ; Cell Line, Tumor ; Cell Survival ; Cytokines/metabolism/secretion ; High-Throughput Nucleotide Sequencing ; Humans ; Hydrophobic and Hydrophilic Interactions ; Interleukin-1 Receptor-Associated Kinases/biosynthesis/genetics/metabolism ; Janus Kinases/metabolism ; Lymphoma, B-Cell, Marginal Zone/genetics ; Lymphoma, Large B-Cell, Diffuse/classification/*genetics/*pathology ; Molecular Sequence Data ; Mutant Proteins/chemistry/genetics/metabolism ; Mutation/*genetics ; Myeloid Differentiation Factor 88/chemistry/*genetics/*metabolism ; NF-kappa B/metabolism ; Oncogenes/*genetics ; Phosphorylation ; Protein Structure, Tertiary ; RNA Interference ; Receptors, Interleukin-1/metabolism ; STAT3 Transcription Factor/metabolism ; Sequence Analysis, RNA ; Signal Transduction ; Toll-Like Receptors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...