ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1996-08-16
    Description: A signaling pathway has been elucidated whereby growth factors activate the transcription factor cyclic adenosine monophosphate response element-binding protein (CREB), a critical regulator of immediate early gene transcription. Growth factor-stimulated CREB phosphorylation at serine-133 is mediated by the RAS-mitogen-activated protein kinase (MAPK) pathway. MAPK activates CREB kinase, which in turn phosphorylates and activates CREB. Purification, sequencing, and biochemical characterization of CREB kinase revealed that it is identical to a member of the pp90(RSK) family, RSK2. RSK2 was shown to mediate growth factor induction of CREB serine-133 phosphorylation both in vitro and in vivo. These findings identify a cellular function for RSK2 and define a mechanism whereby growth factor signals mediated by RAS and MAPK are transmitted to the nucleus to activate gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xing, J -- Ginty, D D -- Greenberg, M E -- CA43855/CA/NCI NIH HHS/ -- NS34814-01/NS/NINDS NIH HHS/ -- P30-HD18655/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1996 Aug 16;273(5277):959-63.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8688081" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Line ; Cell Nucleus/metabolism ; Cyclic AMP Response Element-Binding Protein/*metabolism ; Epidermal Growth Factor/pharmacology ; *Gene Expression Regulation ; Growth Substances/*pharmacology ; Humans ; Molecular Sequence Data ; Nerve Growth Factors/pharmacology ; PC12 Cells ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; Rats ; Ribosomal Protein S6 Kinases ; *Signal Transduction ; Tetradecanoylphorbol Acetate/pharmacology ; Transcriptional Activation ; Transfection ; Tumor Cells, Cultured ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1993-04-09
    Description: Mammalian circadian rhythms are regulated by a pacemaker within the suprachiasmatic nuclei (SCN) of the hypothalamus. The molecular mechanisms controlling the synchronization of the circadian pacemaker are unknown; however, immediate early gene (IEG) expression in the SCN is tightly correlated with entrainment of SCN-regulated rhythms. Antibodies were isolated that recognize the activated, phosphorylated form of the transcription factor cyclic adenosine monophosphate response element binding protein (CREB). Within minutes after exposure of hamsters to light, CREB in the SCN became phosphorylated on the transcriptional regulatory site, Ser133. CREB phosphorylation was dependent on circadian time: CREB became phosphorylated only at times during the circadian cycle when light induced IEG expression and caused phase shifts of circadian rhythms. These results implicate CREB in neuronal signaling in the hypothalamus and suggest that circadian clock gating of light-regulated molecular responses in the SCN occurs upstream of phosphorylation of CREB.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ginty, D D -- Kornhauser, J M -- Thompson, M A -- Bading, H -- Mayo, K E -- Takahashi, J S -- Greenberg, M E -- F31 MH10241/MH/NIMH NIH HHS/ -- F32 NS08764/NS/NINDS NIH HHS/ -- NS 28829/NS/NINDS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1993 Apr 9;260(5105):238-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8097062" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; *Circadian Rhythm ; Colforsin/pharmacology ; Cricetinae ; Cyclic AMP Response Element-Binding Protein/immunology/*metabolism ; Darkness ; Gene Expression Regulation ; Genes, fos ; Glutamates/pharmacology ; Glutamic Acid ; *Light ; Molecular Sequence Data ; PC12 Cells ; Phosphorylation ; Potassium Chloride/pharmacology ; Suprachiasmatic Nucleus/drug effects/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...