ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5036
    Keywords: Actinorhizae ; Alder ; Alnus glutinosa ; Frankia ; Nitrogen-fixation ; Symbiosis ; Tissue culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary ThreeAlnus glutinosa (L.) Gaertn. clones, obtained byin vitro propagation techniques, were inoculated with four strains ofFrankia. The ability of these clones to nodulate and fix nitrogen was previously reported; this study deals with the performance of 12 different combinations of pairs of symbionts. Shoot fresh weight, shoot height and collar diameter were measured 60 and 82 days after inoculation. Shoot fresh weight seems to be more sensitive and reliable than the other parameters. Nitrogenase activity, measured by the acetylene reduction assay, was assayed 78 days after inoculation and was consistent with the biomass measurements. Better growth was observed when type N strains were used. Significant growth differences were observed between clones AG-2 and AG-8 on the one hand and clone AG-4 on the other. Thus, the use of genetically defined host plants and microsymbionts permitted the demonstration of significant performance variation even among cloned plants from the same provenance (AG-4 and AG-8). The duration of the experiment influenced the results with differences becoming less significant with time. This might be caused by an external limiting factor such as the pot size, competition for light,etc. But it could also be indicative of differences in nodulation speed among the treatments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: acetylene reduction ; Alnus glutinosa ; amino acids ; Elaeagnus umbellata ; N2 fixation ; nitrogenase activity ; Populus deltoides ; resorption ; salt-extractable protein ; translocation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Two experiments were conducted to determine patterns of N change in tissues of autumn olive (Elaeagnus umbellata Thunb.) and black alder (Alnus glutinosa [L.] Gaertn.) during autumn in central Illinois, U.S.A. In the first study leaf nitrogen concentrations of autumn olive decreased 40% at an infertile minespoil site and 39% at a fertile prairie site throughout autumn whereas nitrogen concentrations in respective bark samples increased by 39% and 37%. Salt-extractable protein concentrations increased in bark and decreased in leaves over the sampling period. Free amino acid concentrations of autumn olive leaves decreased over the course of the experiment from peak concentrations in August. Asparagine, glutamic acid and proline were major constituents of the free amino acid pools in leaves. Total phosphorus concentrations of autumn olive leaves declined by 40–46% during autumn while bark concentrations of P did not significantly change. In the second experiment non-nodulated seedlings of alder receiving a low level of N-fertilization did not exhibit net resorption of leaf N during autumn whereas foliar N concentration of contrasting nonactinorhizal cottonwood plants (Populus deltoides Bartr. ex. Marsh) under the same fertilization regime decreased by 27% after the first frost. A gradual but significant decrease of 38% in foliar N concentration of nodulated alder seedlings grown under a low N-fertilization regime was associated with the cessation of nitrogenase activity during autumn in nodules. Compared with the low N fertilization regime, the higher level of N-fertilization resulted in smaller autumnal decreases of foliar N concentration in nodulated alder (17%) and in cottonwood (20%); but there was no decrease in foliar N concentration in non-nodulated alder. The higher level of N-fertilization promoted a greater accumulation of N in the roots than in the bark of both tree species after the first frost. Our results suggest that black alder lackingFrankia symbionts does not exhibit net leaf N resorption and that autumnal decreases in leaf N ofFrankia-nodulated black alder result primarily from declining foliar N import relative to export due to low temperature inhibition of N2 fixation. In contrast, autumn olive exhibited greater and more precipitous autumnal declines in foliar N concentration than those of alder, and the pattern of N decline was unaffected by site fertility.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 87 (1985), S. 195-208 
    ISSN: 1573-5036
    Keywords: Alnus glutinosa ; Black alder ; Dinitrogen fixation ; Hybrid poplar ; Nitrogen ; Nitrogen cycling ; Short-rotation plantation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Nitrogen cycling was studied during the third growing season in pure and mixed plantings (33×33 cm spacing) of hybrid poplar and black alder in southeastern Canada. After 3 years, hybrid poplar growth and N content of living tissues in a plot and of individual hybrid poplar plants increased with the proportion of black alder in a planting. No differences were detected among N contents of individual alder plants regardless of plot treatment. Black alder allocated a larger portion of its N to roots than hybrid poplar. Symbiotic nitrogen fixation was estimated to account for 80% of the nitrogen in aboveground alder tissues in the pure treatment using natural15N dilution. N return in leaf litter was estimated to be 70kg ha−1 in the pure alder treatment and decreased to a minimum of 20 kg ha−1 in the pure hybrid poplar plots. No difference was detected among treatments for throughfall N content. Nitrogen concentration in roots and leaf litterfall of black alder was higher than hybrid poplar. Significant soil N accretion occurred in mixed plantings containing two alders to one poplar and pure black alder plantings. Nitrogen availability (NO3−N) increased with the amount of black alder in a plot. Results suggest that the early increase in nitrogen accumulation of hybrid poplar in mixed treatments can be attributed to an increase of total soil N availability resulting from the input of large amounts of N from easily mineralizable alder tissue.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5036
    Keywords: Alnus glutinosa ; carbon ; cold temperate climate ; lignin ; mesh bags ; nitrogen ; Orthic ; Sombric Brunisol ; plantation ; Populus ; root decomposition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The decomposition of the roots (0–2 mm, 2–5 mm and 5–10 mm) of black alder (Alnus glutinosa (L.) Gaertn.) and hybrid poplar (Populus nigra L. X Populus trichocarpa Torr & Gray) was followed over a 462-day period in pure and mixed plantings in southern Quebec. Small roots of alder had the highest initial concentrations of nitrogen and lignin, and lost 9 and 10% less mass than medium and large roots, respectively. Large roots of poplar had the highest lignin-to-nitrogen ratio and showed the smallest loss of mass over the total incubation period. Slow root decomposition of black alder and hybrid poplar was characterized by a greater proportion of initial root nitrogen immobilized per unit of carbon respired. Lignin concentration in roots of alder and poplar increased rapidly at the beginning of the incubation. Our results suggest that high levels of nitrogen in roots of alder could contribute in slowing the rate of decomposition by allowing the formation of nitrogen-lignin derivatives and low levels of nitrogen in roots of poplar may limit the growth of microorganisms and the rate of root decomposition. A multiple regression was developed using initial nitrogen, lignin concentration and the ratio of lignin to nitrogen to produce an index of the rate of root decomposition. The correlation between the index values and the percentage of residual root mass was significant (r=0.98, p〈0.01).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...