ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2234
    Keywords: Variational ; Non-variational ; Configuration interaction ; Diatomic molecules
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary The internally contracted multiconfiguration-reference configuration interaction (CMRCI) method and several non-variational variants of this method (averaged coupled pair approximation (ACPF), quasidegenerate variational perturbation theory (QD-VPT), linearized coupled pair many electron theory (LCPMET)) have been employed to compute potential energy functions and other properties for a number of diatomic molecules (F2, O2, N2, CN, CO) using large basis sets and full valence CASSCF reference wavefunctions. In most cases the variational CMRCI wavefunctions yield more accurate spectroscopic constants than any of the employed non-variational methods. Several basis sets are compared for the N2 molecule. It is found that atomic natural orbital (ANO) contractions led to significant errors in the computedr e , ω e , andD e values.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1434-1948
    Keywords: Conducting materials ; Charge-transfer complexes ; Radical-anion salts ; Alloyed ligands ; Crystal structures ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The new members of the series of 2,5-disubstituted DCNQIs, 1d (Cl/OMe), 1e (Br/OMe), 1j (Cl/I), 1k (Br/I), 1l (I/I), form conducting charge-transfer complexes with TTF (tetrathiofulvalene) which are comparable to known DCNQI/TTFs. From these DCNQIs highly conducting radical-anion salts [2-X, 5-Y-DCNQI]2M (M = Li, Na, K, NH4, Tl, Rb, Ag, Cu) can also be prepared either from the DCNQIs and MI (not AgI), on a metal wire (Ag, Cu), or by electrocrystallization (M = Tl, Ag,Cu). For better crystals a method using periodical switching between reduction and partial oxidation has been developed. With CF3 (large, strongly electron-attracting) as the substituent in DCNQIs 1m (OMe/CF3) and 1n (Me/CF3), conducting TTF complexes remain whereas only 1n yields an insulating copper salt. DCNQI-Cu salts with high conductivities are obtained with alloys containing two or three different DCNQIs. The temperature-dependent conductivities of DCNQI-M salts (other than copper) are similar to those of metal-like semiconductors. All new DCNQI-Cu salts are metallic [M] down to low temperatures, except [1d (Cl/OMe)]2Cu which undergoes a sharp phase transition to an insulating state[M → I]. By variation of the ligands or their ratios in conducting alloys of DCNQI-Cu salts temperature-dependent conductivities can be tuned from M → I to M. In addition, alloying three ligands produced for the first time a radical salt with temperature-independent conductivity from 5 to 300 K. Most remarkably, alloys of the type [(2,5-Me2DCNQI)m] Cu/[{2,5-(CD3)2-DCNQI}n]2Cu which exhibit a sharp M → I phase transition on further cooling reenter the conducting state by an I → M transition, with changes of ca. 108 Scm-1 both ways. For the first time in the field of organic metals crystal structures of DCNQI-copper salts have been determined by X-ray powder diffraction methods and refined by Rietveld analysis. Unit cell data, coordination angles and distances of the π planes are in excellent agreement with the single-crystal X-ray data. However, bond lengths and angles of the ligands are to be less accurate. This powder method proves to be most valuable if only microcrystalline material is available.Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2005/1999/98247_s.pdf or from the author.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...