ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alkalinity, total; Ammonium; Antarctic; Aragonite saturation state; Arctic; Bacteria; Bacteria, high DNA fluorescence; Bacteria, low DNA fluorescence; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottle number; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon/Nitrogen ratio; Carbon/Nitrogen ratio, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon mass; Carbon mass, standard deviation; Ciliates; Coast and continental shelf; Community composition and diversity; Diatoms; Dinoflagellates; E01_271; E03_271; E03_274; E04_271; E04_274; E05_271; Entire community; Event label; EXP; Experiment; Flagellates; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Hydrogen, standard deviation; Hydrogen content; Laboratory experiment; Nanoflagellates; Nanoflagellates, heterotrophic; Nanoflagellates, phototrophic; Nitrate and Nitrite; Nitrogen, standard deviation; Nitrogen mass; OA-ICC; Ocean Acidification International Coordination Centre; Open ocean; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Polar; Salinity; Silicate; Station label; Temperature, water; Time in hours; Transparent exopolymer particles as Gum Xanthan equivalents per volume; Treatment; Type  (1)
  • Marine ecosystem  (1)
  • 2015-2019  (2)
Collection
Keywords
Publisher
Years
  • 2015-2019  (2)
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Tarling, Geraint A; Peck, Victoria L; Ward, Peter; Ensor, N S; Achterberg, Eric Pieter; Tynan, Eithne; Poulton, Alex J; Mitchell, E; Zubkov, Mikhail V (2016): Effects of acute ocean acidification on spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep Sea Research Part II: Topical Studies in Oceanography, 127, 75-92, https://doi.org/10.1016/j.dsr2.2016.02.008
    Publication Date: 2024-03-15
    Description: The polar oceans are experiencing some of the largest levels of ocean acidification (OA) resulting from the uptake of anthropogenic carbon dioxide (CO2). Our understanding of the impacts this is having on polar marine communities is mainly derived from studies of single species in laboratory conditions, while the consequences for food web interactions remain largely unknown. This study carried out experimental manipulations of natural pelagic communities at different high latitude sites in both the northern (Nordic Seas) and southern hemispheres (Scotia and Weddell Seas). The aim of this study was to identify more generic responses and greater experimental reproducibility through implementing a series of short term (4 day), multilevel (3 treatment) carbonate chemistry manipulation experiments on unfiltered natural surface ocean communities, including grazing copepods. The experiments were successfully executed at six different sites, covering a diverse range of environmental conditions and differing plankton community compositions. The study identified the interaction between copepods and dinoflagellate cell abundance to be significantly altered by elevated levels of dissolved CO2 (pCO2), with dinoflagellates decreasing relative to ambient conditions across all six experiments. A similar pattern was not observed in any other major phytoplankton group. The patterns indicate that copepods show a stronger preference for dinoflagellates when in elevated pCO2 conditions, demonstrating that changes in food quality and altered grazing selectivity may be a major consequence of ocean acidification. The study also found that transparent exopolymeric particles (TEP) generally increased when pCO2 levels were elevated, but the response was dependent on the exact set of environmental conditions. Bacteria and nannoplankton showed a neutral response to elevated pCO2 and there was no significant relationship between changes in bacterial or nannoplankton abundance and that of TEP concentrations. Overall, the study illustrated that, although some similar responses exist, these contrasting high latitude surface ocean communities are likely to show different responses to the onset of elevated pCO2.
    Keywords: Alkalinity, total; Ammonium; Antarctic; Aragonite saturation state; Arctic; Bacteria; Bacteria, high DNA fluorescence; Bacteria, low DNA fluorescence; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottle number; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon/Nitrogen ratio; Carbon/Nitrogen ratio, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon mass; Carbon mass, standard deviation; Ciliates; Coast and continental shelf; Community composition and diversity; Diatoms; Dinoflagellates; E01_271; E03_271; E03_274; E04_271; E04_274; E05_271; Entire community; Event label; EXP; Experiment; Flagellates; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Hydrogen, standard deviation; Hydrogen content; Laboratory experiment; Nanoflagellates; Nanoflagellates, heterotrophic; Nanoflagellates, phototrophic; Nitrate and Nitrite; Nitrogen, standard deviation; Nitrogen mass; OA-ICC; Ocean Acidification International Coordination Centre; Open ocean; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Polar; Salinity; Silicate; Station label; Temperature, water; Time in hours; Transparent exopolymer particles as Gum Xanthan equivalents per volume; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 4975 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth-Science Reviews 169 (2017): 132–145, doi:10.1016/j.earscirev.2017.04.005.
    Description: The impact of anthropogenic ocean acidification (OA) on marine ecosystems is a vital concern facing marine scientists and managers of ocean resources. Euthecosomatous pteropods (holoplanktonic gastropods) represent an excellent sentinel for indicating exposure to anthropogenic OA because of the sensitivity of their aragonite shells to the OA conditions less favorable for calcification. However, an integration of observations, experiments and modelling efforts is needed to make accurate predictions of how these organisms will respond to future changes to their environment. Our understanding of the underlying organismal biology and life history is far from complete and must be improved if we are to comprehend fully the responses of these organisms to the multitude of stressors in their environment beyond OA. This review considers the present state of research and understanding of euthecosomatous pteropod biology and ecology of these organisms and considers promising new laboratory methods, advances in instrumentation (such as molecular, trace elements, stable isotopes, palaeobiology alongside autonomous sampling platforms, CT scanning and high-quality video recording) and novel field-based approaches (i.e. studies of upwelling and CO2 vent regions) that may allow us to improve our predictive capacity of their vulnerability and/or resilience. In addition to playing a critical ecological and biogeochemical role, pteropods can offer a significant value as an early-indicator of anthropogenic OA. This role as a sentinel species should be developed further to consolidate their potential use within marine environmental management policy making.
    Description: M.I. Berning is financed by the German Research Foundation Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas (Project DFG-1158 SCHR 667/15-1).
    Keywords: Euthecosomatous pteropods ; Ocean acidification ; Calcifying organisms ; Marine ecosystem ; Carbonate chemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...