ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Alkalinity, total; Alkalinity, total, standard error; Antioxidant activity; Antioxidant activity, standard error; Aragonite saturation state; Benthos; Bicarbonate ion; Bicarbonate ion, standard error; Bottles or small containers/Aquaria (〈20 L); Cabo_de_Gata_Nija; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, per dry mass; Carbonate ion; Carbonate ion, standard error; Carbonate system computation flag; Carbon content per dry mass, standard error; Carbon dioxide; Carbon dioxide, standard error; Chromista; Coast and continental shelf; Cystoseira tamariscifolia; Event label; EXP; Experiment; Experiment duration; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard error; La_Arana; Laboratory experiment; Location; Macroalgae; Maximal electron transport rate; Maximal electron transport rate, standard error; Mediterranean Sea; Nitrate; Nitrate, standard error; Nitrogen, per dry mass; Nitrogen content per dry mass, standard error; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; pH; pH, standard error; Phenolics, all; Phenolics, all, standard error; Phosphate; Phosphate, standard error; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Registration number of species; Salinity; Salinity, standard error; Single species; Species; Temperate; Temperature; Temperature, water; Temperature, water, standard error; Time point, descriptive; Treatment; Type; Uniform resource locator/link to reference  (1)
  • 2015-2019  (1)
Sammlung
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
  • 2015-2019  (1)
Jahr
  • 1
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Celis-Plá, Paula S M; Martínez, Brezo; Korbee, Nathalie; Hall-Spencer, Jason M; Figueroa, Félix L (2017): Ecophysiological responses to elevated CO2 and temperature in Cystoseira tamariscifolia (Phaeophyceae). Climatic Change, 142(1-2), 67-81, https://doi.org/10.1007/s10584-017-1943-y
    Publikationsdatum: 2024-03-15
    Beschreibung: Ocean acidification increases the amount of dissolved inorganic carbon (DIC) available in seawater which can benefit photosynthesis in those algae that are currently carbon limited, leading to shifts in the structure and function of seaweed communities. Recent studies have shown that ocean acidification-driven shifts in seaweed community dominance will depend on interactions with other factors such as light and nutrients. The study of interactive effects of ocean acidification and warming can help elucidate the likely effects of climate change on marine primary producers. In this study, we investigated the ecophysiological responses of Cystoseira tamariscifolia (Hudson) Papenfuss. This large brown macroalga plays an important structural role in coastal Mediterranean communities. Algae were collected from both oligotrophic and ultraoligotrophic waters in southern Spain. They were then incubated in tanks at ambient (ca. 400-500 ppm) and high CO2 (ca. 1200-1300 ppm), and at 20 °C (ambient temperature) and 24 °C (ambient temperature +4 °C). Increased CO2 levels benefited the algae from both origins. Biomass increased in elevated CO2 treatments and was similar in algae from both origins. The maximal electron transport rate (ETRmax), used to estimate photosynthetic capacity, increased in ambient temperature/high CO2 treatments. The highest polyphenol content and antioxidant activity were observed in ambient temperature/high CO2 conditions in algae from both origins; phenol content was higher in algae from ultraoligotrophic waters (1.5-3.0%) than that from oligotrophic waters (1.0-2.2%). Our study shows that ongoing ocean acidification can be expected to increase algal productivity (ETRmax), boost antioxidant activity (EC50), and increase production of photoprotective phenols. Cystoseira tamariscifolia collected from oligotrophic and ultraoligotrophic waters were able to benefit from increases in DIC at ambient temperatures. Warming, not acidification, may be the key stressor for this habitat as CO2 levels continue to rise.
    Schlagwort(e): Alkalinity, total; Alkalinity, total, standard error; Antioxidant activity; Antioxidant activity, standard error; Aragonite saturation state; Benthos; Bicarbonate ion; Bicarbonate ion, standard error; Bottles or small containers/Aquaria (〈20 L); Cabo_de_Gata_Nija; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, per dry mass; Carbonate ion; Carbonate ion, standard error; Carbonate system computation flag; Carbon content per dry mass, standard error; Carbon dioxide; Carbon dioxide, standard error; Chromista; Coast and continental shelf; Cystoseira tamariscifolia; Event label; EXP; Experiment; Experiment duration; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard error; La_Arana; Laboratory experiment; Location; Macroalgae; Maximal electron transport rate; Maximal electron transport rate, standard error; Mediterranean Sea; Nitrate; Nitrate, standard error; Nitrogen, per dry mass; Nitrogen content per dry mass, standard error; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; pH; pH, standard error; Phenolics, all; Phenolics, all, standard error; Phosphate; Phosphate, standard error; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Registration number of species; Salinity; Salinity, standard error; Single species; Species; Temperate; Temperature; Temperature, water; Temperature, water, standard error; Time point, descriptive; Treatment; Type; Uniform resource locator/link to reference
    Materialart: Dataset
    Format: text/tab-separated-values, 3752 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...