ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alkalinity, total; Alkalinity, total, standard error; Ammonium; Ammonium, standard error; Aragonite saturation state; Aragonite saturation state, standard error; Benthos; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcification/Dissolution; Calcification rate, standard error; Calcification rate of calcium carbonate; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbonate ion; Carbonate ion, standard error; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; Corals, cover; Corals, cover, standard error; Coulometric titration; Coverage; Coverage, standard error; Density; Density, standard error; Diversity; Diversity, standard error; Entire community; Evenness of species; Evenness of species, standard error; EXP; Experiment; Extension rate; Extension rate, standard error; Field observation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); LATITUDE; LONGITUDE; Nitrate and Nitrite; Nitrate and Nitrite, standard error; OA-ICC; Ocean Acidification International Coordination Centre; Palau; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Percentage; Percentage, standard error; pH; pH, standard error; Phosphate; Phosphate, standard error; Potentiometric titration; Rocky-shore community; Salinity; Salinity, standard error; Site; South Pacific; Species richness; Species richness, standard error; Temperature, water; Temperature, water, standard error; Tropical  (1)
  • Calibration
Collection
Keywords
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Barkley, Hannah C; Cohen, Anne L; Golbuu, Yimnang; Starczak, V R; DeCarlo, Thomas M; Shamberger, K E F (2015): Changes in coral reef communities across a natural gradient in seawater pH. Science Advances, 1(5), e1500328-e1500328, https://doi.org/10.1126/sciadv.1500328
    Publication Date: 2024-03-15
    Description: Ocean acidification threatens the survival of coral reef ecosystems worldwide. The negative effects of ocean acidification observed in many laboratory experiments have been seen in studies of naturally low-pH reefs, with little evidence to date for adaptation. Recently, we reported initial data suggesting that low-pH coral communities of the Palau Rock Islands appear healthy despite the extreme conditions in which they live. Here, we build on that observation with a comprehensive statistical analysis of benthic communities across Palau's natural acidification gradient. Our analysis revealed a shift in coral community composition but no impact of acidification on coral richness, coralline algae abundance, macroalgae cover, coral calcification, or skeletal density. However, coral bioerosion increased 11-fold as pH decreased from the barrier reefs to the Rock Island bays. Indeed, a comparison of the naturally low-pH coral reef systems studied so far revealed increased bioerosion to be the only consistent feature among them, as responses varied across other indices of ecosystem health. Our results imply that whereas community responses may vary, escalation of coral reef bioerosion and acceleration of a shift from net accreting to net eroding reef structures will likely be a global signature of ocean acidification.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Ammonium; Ammonium, standard error; Aragonite saturation state; Aragonite saturation state, standard error; Benthos; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcification/Dissolution; Calcification rate, standard error; Calcification rate of calcium carbonate; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbonate ion; Carbonate ion, standard error; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; Corals, cover; Corals, cover, standard error; Coulometric titration; Coverage; Coverage, standard error; Density; Density, standard error; Diversity; Diversity, standard error; Entire community; Evenness of species; Evenness of species, standard error; EXP; Experiment; Extension rate; Extension rate, standard error; Field observation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); LATITUDE; LONGITUDE; Nitrate and Nitrite; Nitrate and Nitrite, standard error; OA-ICC; Ocean Acidification International Coordination Centre; Palau; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Percentage; Percentage, standard error; pH; pH, standard error; Phosphate; Phosphate, standard error; Potentiometric titration; Rocky-shore community; Salinity; Salinity, standard error; Site; South Pacific; Species richness; Species richness, standard error; Temperature, water; Temperature, water, standard error; Tropical
    Type: Dataset
    Format: text/tab-separated-values, 728 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Terrestrial, Atmospheric and Oceanic Sciences 28 (2017): 517-524, doi:10.3319/TAO.2017.03.30.01.
    Description: Fine scale temperature structures, which are commonly found in the top few meters of shallow water columns, may result in deviations of the remotely sensed night-time sea surface temperatures (SST) by the MODIS-Aqua sensor (SSTsat) from the bulk sea surface temperatures (SSTbulk) that they purport to represent. The discrepancies between SSTsat and SSTbulk recorded by temperature loggers at eight stations with bottom depths of 2 - 20 m around the Dongsha Atoll (DSA) between June 2013 and May 2015 were examined. The SSTsat had an average cool bias error of -0.43 ± 0.59°C. The bias error was larger in the warmer (〉 26°C) waters which were presumably more strongly stratified. The root mean square error (RMSE) between SSTsat and SSTbulk, ±0.73°C, was 25% larger than that reported in the open northern South China Sea. An operational calibration algorithm was developed to increase the accuracy in the estimation of SSTbulk from SSTsat. In addition to removing the cool bias error, this algorithm also reduced the RMSE to virtually the same level as that found in the open northern South China Sea. With the application of the algorithm, in June 2015, the average SST in the lagoon of the DSA was raised by about 0.5°C to 31.1 ± 0.4°C, and the area of lagoon with SSTbulk above 31°C, the median value of the physiological temperature threshold of reef organisms, was increased by 69% to about three quarters of the lagoon.
    Description: This work was supported in part by the Key Research and Development Program of Shandong Province (grant no. 2015GSF117017) and Ocean University of China (grant no. 201513037 and 201512011) to Pan, and the Academia Sinica through grant titled “Ocean Acidification: Comparative biogeochemistry in shallow-water tropical coral reef ecosystems in a naturally acidic marine environment” to Wong.
    Keywords: Sea surface temperature ; Validation ; Remote sensing ; Dongsha Atoll ; Shallow waters ; Calibration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...