ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Azores_OA; Bicarbonate ion; Bicarbonate ion, standard deviation; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, inorganic, particulate; Carbon, inorganic, particulate, per cell; Carbon, organic, particulate; Carbon, organic, particulate, per cell; Carbon, organic, particulate, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chromista; Coast and continental shelf; Emiliania huxleyi; Event label; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gran_Canaria; Growth; Growth/Morphology; Growth rate; Growth rate, standard deviation; Haptophyta; Laboratory experiment; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon, production, standard deviation; Particulate inorganic carbon/particulate organic carbon ratio; Particulate inorganic carbon/particulate organic carbon ratio, standard deviation; Particulate inorganic carbon per cell, standard deviation; Particulate inorganic carbon production per cell; Particulate organic carbon, production, standard deviation; Particulate organic carbon production per cell; Pelagos; pH; pH, standard deviation; Phytoplankton; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Raunefjord_OA; Salinity; Single species; Site; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Strain; Temperate; Temperature, water; Type of study  (1)
  • Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Biological sample; BIOS; Block; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; Coast and continental shelf; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Gullmar_fjord_2013; Gullmar Fjord, Skagerrak, Sweden; Identification; Laboratory experiment; Mesocosm label; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Other studied parameter or process; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Phytoplankton; Salinity; Silicate; Single species; Skeletonema marinoi; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Temperate; Temperature, water; Time in hours; Treatment: partial pressure of carbon dioxide; Type  (1)
Sammlung
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2024-03-15
    Beschreibung: Because of their large population sizes and rapid cell division rates, marine microbes have, or can generate, ample variation to fuel evolution over a few weeks or months, and subsequently have the potential to evolve in response to global change. Here we measure evolution in the marine diatom Skeletonema marinoi evolved in a natural plankton community in CO2-enriched mesocosms deployed in situ. Mesocosm enclosures are typically used to study how the species composition and biogeochemistry of marine communities respond to environmental shifts, but have not been used for experimental evolution to date. Using this approach, we detect a large evolutionary response to CO2 enrichment in a focal marine diatom, where population growth rate increased by 1.3-fold in high CO2-evolved lineages. This study opens an exciting new possibility of carrying out in situ evolution experiments to understand how marine microbial communities evolve in response to environmental change.
    Schlagwort(e): Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Biological sample; BIOS; Block; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; Coast and continental shelf; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Gullmar_fjord_2013; Gullmar Fjord, Skagerrak, Sweden; Identification; Laboratory experiment; Mesocosm label; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Other studied parameter or process; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Phytoplankton; Salinity; Silicate; Single species; Skeletonema marinoi; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Temperate; Temperature, water; Time in hours; Treatment: partial pressure of carbon dioxide; Type
    Materialart: Dataset
    Format: text/tab-separated-values, 2058 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2024-03-15
    Beschreibung: Although coccolithophore physiological responses to CO2-induced changes in seawater carbonate chemistry have been widely studied in the past, there is limited knowledge on the variability of physiological responses between populations from different areas. In the present study, we investigated the specific responses of growth, particulate organic (POC) and inorganic carbon (PIC) production rates of three populations of the coccolithophore Emiliania huxleyi from three regions in the North Atlantic Ocean (Azores: six strains, Canary Islands: five strains, and Norwegian coast near Bergen: six strains) to a CO2 partial pressure (pCO2) range from 120 to 2630 µatm. Physiological rates of each population and individual strain increased with rising pCO2 levels, reached a maximum and declined thereafter. Optimal pCO2 for growth, POC production rates, and tolerance to low pH (i.e., high proton concentration) was significantly higher in an E. huxleyi population isolated from the Norwegian coast than in those isolated near the Azores and Canary Islands. This may be due to the large environmental variability including large pCO2 and pH fluctuations in coastal waters off Bergen compared to the rather stable oceanic conditions at the other two sites. Maximum growth and POC production rates of the Azores and Bergen populations were similar and significantly higher than that of the Canary Islands population. This pattern could be driven by temperature–CO2 interactions where the chosen incubation temperature (16 °C) was slightly below what strains isolated near the Canary Islands normally experience. Our results indicate adaptation of E. huxleyi to their local environmental conditions and the existence of distinct E. huxleyi populations. Within each population, different growth, POC, and PIC production rates at different pCO2 levels indicated strain-specific phenotypic plasticity. Accounting for this variability is important to understand how or whether E. huxleyi might adapt to rising CO2 levels.
    Schlagwort(e): Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Azores_OA; Bicarbonate ion; Bicarbonate ion, standard deviation; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, inorganic, particulate; Carbon, inorganic, particulate, per cell; Carbon, organic, particulate; Carbon, organic, particulate, per cell; Carbon, organic, particulate, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chromista; Coast and continental shelf; Emiliania huxleyi; Event label; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gran_Canaria; Growth; Growth/Morphology; Growth rate; Growth rate, standard deviation; Haptophyta; Laboratory experiment; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon, production, standard deviation; Particulate inorganic carbon/particulate organic carbon ratio; Particulate inorganic carbon/particulate organic carbon ratio, standard deviation; Particulate inorganic carbon per cell, standard deviation; Particulate inorganic carbon production per cell; Particulate organic carbon, production, standard deviation; Particulate organic carbon production per cell; Pelagos; pH; pH, standard deviation; Phytoplankton; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Raunefjord_OA; Salinity; Single species; Site; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Strain; Temperate; Temperature, water; Type of study
    Materialart: Dataset
    Format: text/tab-separated-values, 9080 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...