ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 167 (1986), S. 140-145 
    ISSN: 1432-2048
    Keywords: Alkaline pyrophosphatase ; Amyloplast ; Arum (starch synthesis) ; Glycine (starch synthesis) ; Starch synthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The aim of this work was to see if amyloplasts contained inorganic pyrophosphatase. Alkaline pyrophosphatase activity, largely dependant upon MgCl2 but not affected by 100 μM ammonium molybdate or 60–100 mM KCl, was demonstrated in exracts of developing and mature clubs of the spadix of Arum maculatum L. and of suspension cultures of Glycine max L., but not in extracts of the developing bulb of Allium cepa L. The maximum catalytic activity of alkaline pyrophosphatase in the above tissues showed a positive correlation with starch synthesis, and in the first two tissues was shown to exceed the activity of ADPglucose pyrophosphorylase. Of the alkaline pyrophosphatase activity in lysates of protoplasts of suspension cultures of Glycine max, 57% was latent. Density-gradient centrifugation of these lysates showed a close correlation between the distribution of alkaline pyrophosphatase and the plastid marker, nitrite reductase. It is suggested that much, if not all, of the alkaline pyrophosphatase in suspension cultures of Glycine max is located in the plastids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...