ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alkaline phosphatase  (1)
  • Alkaline phosphatase, para-Nitrophenylphosphate per cell; Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate, standard deviation; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chromista; Coccoliths, volume; Coccoliths, volume, standard deviation; Coccosphere, length; Coccosphere, length, standard deviation; Coulometric titration; Emiliania huxleyi; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Haptophyta; Irradiance; Irradiance, standard deviation; Laboratory experiment; Laboratory strains; Macro-nutrients; Nitrate; Nitrate, standard deviation; Nitrate reductase activity, per total protein; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon/particulate organic carbon ratio; Particulate inorganic carbon/particulate organic carbon ratio, standard deviation; Particulate inorganic carbon per cell; Particulate inorganic carbon per cell, standard deviation; Particulate organic carbon, per cell; Particulate organic carbon content per cell, standard deviation; Particulate organic nitrogen per cell; Particulate organic nitrogen per cell, standard deviation; Particulate organic phosphorus per cell; Particulate organic phosphorus per cell, standard deviation; Pelagos; pH; pH, standard deviation; Phosphate; Phosphate, standard deviation; Phytoplankton; Potentiometric titration; Salinity; Single species; South Pacific; Species; Table; Temperature, water; Temperature, water, standard deviation; Treatment; Trientalis-type  (1)
Collection
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Rouco, Mónica; Branson, O; Lebrato, Mario; Iglesias-Rodriguez, Debora (2013): The effect of nitrate and phosphate availability on Emiliania huxleyi (NZEH) physiology under different CO2 scenarios. Frontiers in Microbiology, 4, https://doi.org/10.3389/fmicb.2013.00155
    Publication Date: 2024-03-15
    Description: Growth and calcification of the marine coccolithophorid Emiliania huxleyi is affected by ocean acidification and macronutrients limitation and its response varies between strains. Here we investigated the physiological performance of a highly calcified E. huxleyi strain, NZEH, in a multiparametric experiment. Cells were exposed to different CO2 levels (ranging from 250 to 1314 µatm) under three nutrient conditions [nutrient replete (R), nitrate limited (-N), and phosphate limited (-P)]. We focused on calcite and organic carbon quotas and on nitrate and phosphate utilization by analyzing the activity of nitrate reductase (NRase) and alkaline phosphatase (APase), respectively. Particulate inorganic (PIC) and organic (POC) carbon quotas increased with increasing CO2 under R conditions but a different pattern was observed under nutrient limitation. The PIC:POC ratio decreased with increasing CO2 in nutrient limited cultures. Coccolith length increased with CO2 under all nutrient conditions but the coccosphere volume varied depending on the nutrient treatment. Maximum APase activity was found at 561 matm of CO2 (pH 7.92) in -P cultures and in R conditions, NRase activity increased linearly with CO2. These results suggest that E. huxleyi's competitive ability for nutrient uptake might be altered in future high-CO2 oceans. The combined dataset will be useful in model parameterizations of the carbon cycle and ocean acidification.
    Keywords: Alkaline phosphatase, para-Nitrophenylphosphate per cell; Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate, standard deviation; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chromista; Coccoliths, volume; Coccoliths, volume, standard deviation; Coccosphere, length; Coccosphere, length, standard deviation; Coulometric titration; Emiliania huxleyi; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Haptophyta; Irradiance; Irradiance, standard deviation; Laboratory experiment; Laboratory strains; Macro-nutrients; Nitrate; Nitrate, standard deviation; Nitrate reductase activity, per total protein; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon/particulate organic carbon ratio; Particulate inorganic carbon/particulate organic carbon ratio, standard deviation; Particulate inorganic carbon per cell; Particulate inorganic carbon per cell, standard deviation; Particulate organic carbon, per cell; Particulate organic carbon content per cell, standard deviation; Particulate organic nitrogen per cell; Particulate organic nitrogen per cell, standard deviation; Particulate organic phosphorus per cell; Particulate organic phosphorus per cell, standard deviation; Pelagos; pH; pH, standard deviation; Phosphate; Phosphate, standard deviation; Phytoplankton; Potentiometric titration; Salinity; Single species; South Pacific; Species; Table; Temperature, water; Temperature, water, standard deviation; Treatment; Trientalis-type
    Type: Dataset
    Format: text/tab-separated-values, 1422 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 4 (2013): 155, doi:10.3389/fmicb.2013.00155.
    Description: Growth and calcification of the marine coccolithophorid Emiliania huxleyi is affected by ocean acidification and macronutrients limitation and its response varies between strains. Here we investigated the physiological performance of a highly calcified E. huxleyi strain, NZEH, in a multiparametric experiment. Cells were exposed to different CO2 levels (ranging from 250 to 1314 μatm) under three nutrient conditions [nutrient replete (R), nitrate limited (-N), and phosphate limited (-P)]. We focused on calcite and organic carbon quotas and on nitrate and phosphate utilization by analyzing the activity of nitrate reductase (NRase) and alkaline phosphatase (APase), respectively. Particulate inorganic (PIC) and organic (POC) carbon quotas increased with increasing CO2 under R conditions but a different pattern was observed under nutrient limitation. The PIC:POC ratio decreased with increasing CO2 in nutrient limited cultures. Coccolith length increased with CO2 under all nutrient conditions but the coccosphere volume varied depending on the nutrient treatment. Maximum APase activity was found at 561 μatm of CO2 (pH 7.92) in -P cultures and in R conditions, NRase activity increased linearly with CO2. These results suggest that E. huxleyi's competitive ability for nutrient uptake might be altered in future high-CO2 oceans. The combined dataset will be useful in model parameterizations of the carbon cycle and ocean acidification.
    Description: This research was supported by the “European Project on Ocean Acidification” (EPOCA) which received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 211384. This work was also funded in part by The European Research Council (ERC grant 2010-ADG-267931 to Harry Elderfield) and the Spanish Ministry of Science and Innovation (grant CTM2008-05680-C02-01).
    Keywords: Emiliania huxleyi ; Ocean acidification ; Nutrients ; Alkaline phosphatase ; Nitrate reductase ; Calcification
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...