ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Estuaries  (6)
  • Alexandrium fundyense  (2)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 915-933, doi:10.1175/2008JPO3933.1.
    Description: The temporal response of the length of a partially mixed estuary to changes in freshwater discharge Qf and tidal amplitude UT is studied using a 108-day time series collected along the length of the Hudson River estuary in the spring and summer of 2004 and a long-term (13.4 yr) record of Qf, UT, and near-surface salinity. When Qf was moderately high, the tidally averaged length of the estuary L5, here defined as the distance from the mouth to the up-estuary location where the vertically averaged salinity is 5 psu, fluctuated by more than 47 km over the spring–neap cycle, ranging from 28 to 〉75 km. During low flow periods, L5 varied very little over the spring–neap cycle and approached a steady length. The response is quantified and compared to predictions of a linearized model derived from the global estuarine salt balance. The model is forced by fluctuations in Qf and UT relative to average discharge Qo and tidal amplitude UTo and predicts the linear response time scale τ and the steady-state length Lo for average forcing. Two vertical mixing schemes are considered, in which 1) mixing is proportional to UT and 2) dependence of mixing on stratification is also parameterized. Based on least squares fits between L5 and estuary length predicted by the model, estimated τ varied by an order of magnitude from a period of high average discharge (Qo = 750 m3 s−1, τ = 4.2 days) to a period of low discharge (Qo = 170 m3 s−1, τ = 40.4 days). Over the range of observed discharge, Lo Qo−0.30±0.03, consistent with the theoretical scaling for an estuary whose landward salt flux is driven by vertical estuarine exchange circulation. Estimated τ was proportional to the discharge advection time scale (LoA/Qo, where A is the cross-sectional area of the estuary). However, τ was 3–4 times larger than the theoretical prediction. The model with stratification-dependent mixing predicted variations in L5 with higher skill than the model with mixing proportional to UT. This model provides insight into the time-dependent response of a partially stratified estuary to changes in forcing and explains the strong dependence of the amplitude of the spring–neap response on freshwater discharge. However, the utility of the linear model is limited because it assumes a uniform channel, and because the underlying dynamics are nonlinear, and the forcing Qf and UT can undergo large amplitude variations. River discharge, in particular, can vary by over an order of magnitude over time scales comparable to or shorter than the response time scale of the estuary.
    Description: This study was generously funded by Hudson River Foundation Grant 005/03A and NSF Grant OCE-0452054. Lerczak also received partial support from the Woods Hole Center for Oceans and Human Health, NSF Grant OCE-0430724 and NIEHS Grant 1-P50-ES012742-01.
    Keywords: Estuaries ; Rivers ; Tides ; Stability ; Vertical motion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Harmful Algae 12 (2011): 26–38, doi:10.1016/j.hal.2011.08.009.
    Description: Paralytic Shellfish Poisoning (PSP) toxins are annually recurrent along the Massachusetts coastline (USA), which includes many small embayments and salt ponds. Among these is the Nauset Marsh System (NMS), which has a long history of PSP toxicity. Little is known, however, about the bloom dynamics of the causative organism Alexandrium fundyense within that economically and socially important system. The overall goal of this work was to characterize the distribution and dynamics of A. fundyense blooms within the NMS and adjacent coastal waters by documenting the distribution and abundance of resting cysts and vegetative cells. Cysts were found predominantly in three drowned kettle holes or salt ponds at the distal ends of the NMS - Salt Pond, Mill Pond, and Town Cove. The central region of the NMS had a much lower concentration of cysts. Two types of A. fundyense blooms were observed. One originated entirely within the estuary, seeded by cysts in the three seedbeds. These blooms developed independently of each other and of the A. fundyense population observed in adjacent coastal waters outside the NMS. The temporal development of the blooms was different in the three salt ponds, with initiation differing by as much as 30 days. These differences do not appear to reflect the initial cyst abundances in these locations, and may simply result from higher cell retention and higher nutrient concentrations in Mill Pond, the first site to bloom. Germination of cysts accounted for a small percentage of the peak cell densities in the ponds, so population size was influenced more by the factors affecting growth than by cyst abundance. Subsurface cell aggregation (surface avoidance) limited advection of the vegetative A. fundyense cells out of the salt ponds through the shallow inlet channels. Thus, the upper reaches of the NMS are at the greatest risk for PSP since the highest cyst abundances and cell concentrations were found there. After these localized blooms in the salt ponds peaked and declined, a second, late season bloom occurred within the central portions of the NMS. The timing of this second bloom relative to those within the salt ponds and the coastal circulation patterns at that time strongly suggest that those cells originated from a regional A. fundyense bloom in the Gulf of Maine, delivered to the central marsh from coastal waters outside the NMS through Nauset Inlet. These results will guide policy decisions about water quality as well as shellfish monitoring and utilization within the NMS and highlight the potential for “surgical” closures of shellfish during PSP events, leaving some areas open for harvesting while others are closed.
    Description: This work was supported by NOAA Grant NA06OAR4170021, NPS Grant H238015504 and by the Woods Hole Center for Oceans and Human Health through NSF Grants OCE-0911031 and OCE-0430724 and NIEHS Grant 1P50-ES01274201. B.G.C. was supported by a Xunta de Galicia Ángeles Alvariño fellowship and the Stanley W. Watson Chair for Excellence in Oceanography under a Postdoctoral program at the Woods Hole Oceanographic Institution.
    Keywords: Paralytic shellfish poisoning ; Alexandrium fundyense ; Dinoflagellate cysts ; Bloom dynamics ; Retention mechanism ; Nauset Marsh System
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © 2008 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Environmental Fluid Mechanics 8 (2008): 495-509, doi:10.1007/s10652-008-9107-2.
    Description: Estuarine turbulence is notable in that both the dissipation rate and the buoyancy frequency extend to much higher values than in other natural environments. The high dissipation rates lead to a distinct inertial subrange in the velocity and scalar spectra, which can be exploited for quantifying the turbulence quantities. However, high buoyancy frequencies lead to small Ozmidov scales, which require high sampling rates and small spatial aperture to resolve the turbulent fluxes. A set of observations in a highly stratified estuary demonstrate the effectiveness of a vessel-mounted turbulence array for resolving turbulent processes, and for relating the turbulence to the forcing by the Reynolds-averaged flow. The observations focus on the ebb, when most of the buoyancy flux occurs. Three stages of mixing are observed: (1) intermittent and localized but intense shear instability during the early ebb; (2) continuous and relatively homogeneous shear-induced mixing during the mid-ebb, and weakly stratified, boundary-layer mixing during the late ebb. The mixing efficiency as quantified by the flux Richardson number Rf was frequently observed to be higher than the canonical value of 0.15 from Osborn (J Phys Oceanogr 10:83–89, 1980). The high efficiency may be linked to the temporal–spatial evolution of shear instabilities.
    Description: The funding for this research was obtained from ONR Grant N00014-06-1-0292 and NSF Grant OCE-0729547.
    Keywords: Turbulence ; Estuaries ; Shear instability ; Buoyancy flux
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 753-770, doi:10.1175/2007JPO3808.1.
    Description: A tidally and cross-sectionally averaged model based on the temporal evolution of the quasi-steady Hansen and Rattray equations is applied to simulate the salinity distribution and vertical exchange flow along the Hudson River estuary. The model achieves high skill at hindcasting salinity and residual velocity variation during a 110-day period in 2004 covering a wide range of river discharges and tidal forcing. The approach is based on an existing model framework that has been modified to improve model skill relative to observations. The external forcing has been modified to capture meteorological time-scale variability in salinity, stratification, and residual velocity due to sea level fluctuations at the open boundary and along-estuary wind stress. To reflect changes in vertical mixing due to stratification, the vertical mixing coefficients have been modified to use the bottom boundary layer height rather than the water depth as an effective mixing length scale. The boundary layer parameterization depends on the tidal amplitude and the local baroclinic pressure gradient through the longitudinal Richardson number, and improves the model response to spring–neap variability in tidal amplitude during periods of high river discharge. Finally, steady-state model solutions are evaluated for both the Hudson River and northern San Francisco Bay over a range of forcing conditions. Agreement between the model and scaling of equilibrium salinity intrusions lends confidence that the approach is transferable to other estuaries, despite significant differences in bathymetry. Discrepancies between the model results and observations at high river discharge are indicative of limits at which the formulation begins to fail, and where an alternative approach that captures two-layer dynamics would be more appropriate.
    Description: This research was supported by the Hudson River Foundation Grant 005/03A, NSF Grant OCE-0452054, and by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the J. Seward Johnson Fund.
    Keywords: Estuaries ; Salinity ; Rivers ; Tides ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Estuaries and Coasts 38 (2015): 2240-2258, doi:10.1007/s12237-015-9949-z.
    Description: A highly resolved, 3-d model of hydrodynamics and Alexandrium fundyense in an estuarine embayment has been developed to investigate the physical and biological controls on a recurrent harmful algal bloom. Nauset estuary on Cape Cod (MA, USA) consists of three salt ponds connected to the ocean through a shallow marsh and network of tidal channels. The model is evaluated using quantitative skill metrics against observations of physical and biological conditions during three spring blooms. The A. fundyense model is based on prior model applications for the nearby Gulf of Maine, but notable modifications were made to be consistent with the Nauset observations. The dominant factors controlling the A. fundyense bloom in Nauset were the water temperature, which regulates organism growth rates, and the efficient retention of cells due to bathymetric constraints, stratification, and cell behavior (diel vertical migration). Spring-neap variability in exchange altered residence times, but for cell retention to be substantially longer than the cell doubling time required both active vertical migration and stratification that inhibits mixing of cells into the surface layer by wind and tidal currents. Unlike in the Gulf of Maine, the model results were relatively insensitive to cyst distributions or germination rates. Instead, in Nauset, high apparent rates of vegetative cell division by retained populations dictated bloom development. Cyst germination occurred earlier in the year than in the Gulf of Maine, suggesting that Nauset cysts have different controls on germination timing. The model results were relatively insensitive to nutrient concentrations, due to eutrophic conditions in the highly impacted estuary or due to limitations in the spatial and temporal resolution of nutrient sampling. Cell loss rates were inferred to be extremely low during the growth phase of the bloom, but increased rapidly during the final phase due to processes that remain uncertain. The validated model allows a quantitative assessment of the factors that contribute to the development of a recurrent harmful algal bloom and provides a framework for assessing similarly impacted coastal systems.
    Description: This work was supported by the National Science Foundation (OCE-0430724, OCE-0911031, and OCE-1314642) and National Institutes of Health (NIEHS-1P50-ES021923-01) through the Woods Hole Center for Oceans and Human Health, and by National Park Service (NPS) Cooperative Agreement H238015504.
    Description: 2016-03-17
    Keywords: Harmful algal bloom ; Hydrodynamic-biological model ; Alexandrium fundyense ; Residence time ; Cyst germination ; Growing degree day
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-12-09
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(7), (2022): 1333-1350, https://doi.org/10.1175/jpo-d-21-0298.1.
    Description: Idealized numerical simulations were conducted to investigate the influence of channel curvature on estuarine stratification and mixing. Stratification is decreased and tidal energy dissipation is increased in sinuous estuaries compared to straight channel estuaries. We applied a vertical salinity variance budget to quantify the influence of straining and mixing on stratification. Secondary circulation due to the channel curvature is found to affect stratification in sinuous channels through both lateral straining and enhanced vertical mixing. Alternating negative and positive lateral straining occur in meanders upstream and downstream of the bend apex, respectively, corresponding to the normal and reversed secondary circulation with curvature. The vertical mixing is locally enhanced in curved channels with the maximum mixing located upstream of the bend apex. Bend-scale bottom salinity fronts are generated near the inner bank upstream of the bend apex as a result of interaction between the secondary flow and stratification. Shear mixing at bottom fronts, instead of overturning mixing by the secondary circulation, provides the dominant mechanism for destruction of stratification. Channel curvature can also lead to increased drag, and using a Simpson number with this increased drag coefficient can relate the decrease in stratification with curvature to the broader estuarine parameter space.
    Description: The research leading to these results was funded by NSF Awards OCE-1634481 and OCE-2123002.
    Description: 2022-12-09
    Keywords: Estuaries ; Mixing ; Secondary circulation ; Fronts ; Tides ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(6), (2019):1619-1637, doi:10.1175/JPO-D-18-0175.1.
    Description: Although the hydrodynamics of river meanders are well studied, the influence of curvature on flow in estuaries, with alternating tidal flow and varying water levels and salinity gradients, is less well understood. This paper describes a field study on curvature effects in a narrow salt-marsh creek with sharp bends. The key observations, obtained during times of negligible stratification, are 1) distinct differences between secondary flow during ebb and flood, with helical circulation as in rivers during ebb and a reversed circulation during flood, and 2) maximum (ebb and flood) streamwise velocities near the inside of the bend, unlike typical river bend flow. The streamwise velocity structure is explained by the lack of a distinct point bar and the relatively deep cross section in the estuary, which means that curvature-induced inward momentum redistribution is not overcome by outward redistribution by frictional and topographic effects. Through differential advection of the along-estuary salinity gradient, the laterally sheared streamwise velocity generates lateral salinity differences, with the saltiest water near the inside during flood. The resulting lateral baroclinic pressure gradient force enhances the standard helical circulation during ebb but counteracts it during flood. This first leads to a reversed secondary circulation during flood in the outer part of the cross section, which triggers a positive feedback mechanism by bringing slower-moving water from the outside inward along the surface. This leads to a reversal of the vertical shear in the streamwise flow, and therefore in the centrifugal force, which further enhances the reversed secondary circulation.
    Description: This project was funded by NSF Grant OCE-1634490. During this work W.M. Kranenburg was supported as USGS Postdoctoral Scholar at Woods Hole Oceanographic Institution. A.M.P. Garcia was supported by the Michael J. Kowalski Fellowship in Ocean Science and Engineering (AMPG), and the Diversity Fellowship of the MIT Office of the Dean of Graduate Education (AMPG). The authors thank Jay Sisson for the technical support and Peter Traykovski for providing the bathymetric data. Also, the suggestions for improvement by Dr. K. Blanckaert and an anonymous reviewer are thankfully acknowledged.
    Keywords: Estuaries ; Advection ; Baroclinic flows ; Barotropic flows
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(3),(2020): 595-613, doi:10.1175/JPO-D-19-0108.1.
    Description: Small estuaries in Mediterranean climates display pronounced salinity variability at seasonal and event time scales. Here, we use a hydrodynamic model of the Coos Estuary, Oregon, to examine the seasonal variability of the salinity dynamics and estuarine exchange flow. The exchange flow is primarily driven by tidal processes, varying with the spring–neap cycle rather than discharge or the salinity gradient. The salinity distribution is rarely in equilibrium with discharge conditions because during the wet season the response time scale is longer than discharge events, while during low flow it is longer than the entire dry season. Consequently, the salt field is rarely fully adjusted to the forcing and common power-law relations between the salinity intrusion and discharge do not apply. Further complicating the salinity dynamics is the estuarine geometry that consists of multiple branching channel segments with distinct freshwater sources. These channel segments act as subestuaries that import both higher- and lower-salinity water and export intermediate salinities. Throughout the estuary, tidal dispersion scales with tidal velocity squared, and likely includes jet–sink flow at the mouth, lateral shear dispersion, and tidal trapping in branching channel segments inside the estuary. While the estuarine inflow is strongly correlated with tidal amplitude, the outflow, stratification, and total mixing in the estuary are dependent on the seasonal variation in river discharge, which is similar to estuaries that are dominated by subtidal exchange flow.
    Description: We thank two anonymous reviewers for constructive comments, the staff of the South Slough National Estuarine Research Reserve for providing time series data, and Parker MacCready for sharing LiveOcean boundary conditions. This work was partially sponsored by the National Estuarine Research Reserve System Science Collaborative, which supports collaborative research that addresses coastal management problems important to the reserves. The Science Collaborative is funded by the National Oceanic and Atmospheric Administration and managed by the University of Michigan Water Center (NAI4NOS4190145). Computations were performed on the University of Oregon high performance computer Talapas.
    Description: 2020-08-26
    Keywords: Estuaries ; North Pacific Ocean ; Baroclinic flows ; Channel flows ; Dispersion ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...