ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (11)
  • Aircraft Stability and Control  (10)
  • STRUCTURAL MECHANICS
  • ASTROPHYSICS
  • 1970-1974
  • 1960-1964  (11)
  • 1961  (11)
Collection
  • Other Sources  (11)
Years
  • 1970-1974
  • 1960-1964  (11)
Year
  • 1
    Publication Date: 2008-08-25
    Description: Effect of surface reactions on fatigue failure
    Keywords: STRUCTURAL MECHANICS
    Type: NBS-7357
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-17
    Description: This paper is concerned with a discussion of some of the problems of flutter and aeroelasticity that are or may be important at high speeds. Various theoretical procedures for treating high Mach number flutter are reviewed. Application of two of these methods, namely, the Van Dyke method and piston-theory method, is made to a specific example and compared with linear two- and three-dimensional results. It is shown that the effects of thickness and airfoil shape are destabilizing as compared with linear theory at high Mach number. In order to demonstrate the validity of these large predicted effects, experimental flutter results are shown for two rectangular wings at Mach numbers of 6.86 and 3. The results of nonlinear piston-theory calculations were in good agreement with experiment, whereas the results of using two- and three-dimensional linear theory were not. In addition, some results demonstrating the importance of including camber modes in a flutter analysis are shown, as well as a discussion of one case of flutter due to aerodynamic heating.
    Keywords: Aircraft Stability and Control
    Type: NASA-TN-D-942 , L-1645
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-17
    Description: A low-speed investigation has been conducted in the Langley stability tunnel to study the effects of frequency and amplitude of sideslipping motion on the lateral stability derivatives of a 60 deg. delta wing, a 45 deg. sweptback wing, and an unswept wing. The investigation was made for values of the reduced-frequency parameter of 0.066 and 0.218 and for a range of amplitudes from +/- 2 to +/- 6 deg. The results of the investigation indicated that increasing the frequency of the oscillation generally produced an appreciable change in magnitude of the lateral oscillatory stability derivatives in the higher angle-of-attack range. This effect was greatest for the 60 deg. delta wing and smallest for the unswept wing and generally resulted in a more linear variation of these derivatives with angle of attack. For the relatively high frequency at which the amplitude was varied, there appeared to be little effect on the measured derivatives as a result of the change in amplitude of the oscillation.
    Keywords: Aircraft Stability and Control
    Type: NASA-TN-D-896 , L-1608
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-16
    Description: An adjustable feel system connected to the longitudinal control system of a transonic fighter airplane has been developed and has been evaluated in flight. Variable control feel including response feel is provided from the following five sources: control position, control rate, normal acceleration, pitching velocity, and pitching acceleration. This system provides a very flexible tool for more detailed study of longitudinal control feel characteristics than has previously been possible. The evaluation program for the variable-feel system yielded flight time histories which illustrate effects on the stability of airplane and control-system response modes of large amounts of response feel. These results illustrate the need for balancing the amounts of feel from normal acceleration and pitching acceleration to maintain the stability of the short-period and control-system modes. At the frequency of the short-period mode, large amounts of normal-acceleration feel cause the control system to oscillate and excite the airplane short-period mode of oscillation. At the same frequency the pitching acceleration component of feel, which leads the normal-acceleration component by 180 deg, is almost equivalent to viscous damping on the stick. However, at slightly frequencies the lag of the response-feel components increases by 90 deg or more so that a large pitching-acceleration component excites an oscillation of the control system at 4 cycles per second. These results by confirming and supplementing the conclusions of previous observers indicate that the adjustable feel system is operating properly.
    Keywords: Aircraft Stability and Control
    Type: NASA-TN-D-632 , L-1152
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-15
    Description: A low-speed investigation has been made to determine the static and oscillatory longitudinal and lateral stability derivatives of a proposed reentry vehicle having an extensible heat shield for reentry at high angles of attack. The heat shield is extended forward to give the desired aerodynamic-center position for high-angle-of-attack reentry and, after completion of the reentry phase, is retracted to give stability and trim for gliding flight at low angles of attack. Near an angle of attack of 900 the reentry configuration was statically stable both longitudinally and directionally, had positive dihedral effect, and had positive damping in roll but zero damping in yaw. The landing configuration had positive damping in pitch, roll, and yaw over the test angle-of-attack range but was directionally unstable and had negative dihedral effect between an angle of attack of about 10 and 20 deg.
    Keywords: Aircraft Stability and Control
    Type: NASA-TN-D-892 , L-1329
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-10
    Description: A study is made of the landing of an airplane on a fuselage with "planned" curvature of its lower surface. Initial contact is considered to stop the vertical motion of a point remote from the center of gravity, thus causing rocking on the curved lower surface which converts sinking-speed energy into angular energy in pitch for dissipation by damping forces. Analysis is made of loads and motions for a given fuselage shape, and the contours required to give desired load histories are determined. Most of the calculations involve initial contact at the tail, but there are two cases of unflared landings with initial contact at the nose. The calculations are checked experimentally for the tail - low case.
    Keywords: Aircraft Stability and Control
    Type: NASA-TN-D-760 , L-201
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-15
    Description: A fixed-base simulator investigation has been made of stability and control problems during piloted reentry from lunar missions. Reentries were made within constraints of acceleration and skipping, in which the pilot was given simulated navigation tasks of altitude and heading angle commands. Vehicles considered included a blunt-face, high-drag capsule, and a low-drag lifting cone, each of which had a trim lift-drag ratio of 0.5. With the provision of three-axis automatic damping, both vehicles were easily controlled through reentry after a brief pilot-training period. With all dampers out, safe reentries could be made and both vehicles were rated satisfactory for emergency operation. In damper-failure conditions resulting in inadequate Dutch roll damping, the lifting-cone vehicle exhibited control problems due to excessive dihedral effect and oscillatory acceleration effects.
    Keywords: Aircraft Stability and Control
    Type: NASA-TN-D-986 , L-1764
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-15
    Description: The static aerodynamic characteristics of a canard airplane configuration having twin vertical stabilizing surfaces are presented. The model consisted of a wing and canard both of triangular plan form and aspect ratio 2 mounted on a Sears-Haack body of fineness ratio 12.5 and two swept and tapered wing-mounted vertical tails of aspect ratio 1.35. Data are presented for Mach numbers from 0.70 to 2.22 and for angles of attack from -6 to +18 deg. at 0 and 5 deg. sideslip. Tests were made with the canard off and with the canard on. Nominal canard deflection angles ranged from 0 to 10 deg. The Reynolds number was 3.68 x 10(exp 6) based on the wing mean aerodynamic chord. Selected portions of the data obtained in this investigation are compared with previously published results for the same model having a single vertical tail instead of twin vertical tails. Without the canard, the directional stability at supersonic Mach numbers and high angles of attack was improved slightly by replacing the single tail with twin tails. However, at a Mach number of 0.70, the directional stability of the twin-tail model deteriorated rapidly with increasing angle of attack above 10 deg. and fell considerably below the level for the single-tail model. At subsonic speeds the directional stability of the twin-tail model with the canard was comparable to that for the single-tail model and at supersonic speed it was considerably greater at high angles of attack. Unlike the single-tail model, the twin-tail model at 50 sideslip exhibited an unstable break in the variation of pitching-moment coefficient with lift coefficient near 10 deg. angle of attack for 0.70 Mach number.
    Keywords: Aircraft Stability and Control
    Type: NASA-TN-D-1033
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-15
    Description: A transonic and a supersonic flutter investigation of 1/2-size models of the all-movable canard surface of an expendable powered target has been conducted in the Langley transonic blowdown tunnel and in the Langley 9- by 18-inch supersonic aeroelasticity tunnel, respectively. The transonic investigation covered a Mach number range from 0.7 to 1.3, and the supersonic investigation was made at Mach numbers 1.3, 2.O, and 2.55. The effects on the flutter characteristics of the models of different levels of stiffness and of free play in the pitch control linkage were examined. The semispan models, which were tested at an angle of attack of 0 deg, had pitch springs with the scaled design and 1/2 the scaled design pitch stiffness and total free play in pitch ranging from 0 to 1 deg. An additional model configuration which had a pitch spring 1/4 the scaled design pitch stiffness and no free play in pitch was included in the supersonic tests. All model configurations investigated were flutter free up to dynamic pressures 32 percent greater than those required for flight throughout the Mach number range. Several model configurations were tested to considerably higher dynamic pressures without obtaining flutter at both transonic and supersonic speeds.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-SX-616 , L-1303
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-16
    Description: A general study of longitudinal control feel was made with a transonic fighter-type airplane equipped with a control-feel system which 4 was adjustable in flight. The control-feel system provided a feel component with individual gain control in proportion to each of five quantities: stick deflection, stick rate, airplane normal acceleration, pitching acceleration, and pitching velocity. A number of feel configurations were investigated in flight and analytically. These feel configurations had feel components in various amounts from various combinations of these five sources. The results contained herein are all for an airplane center-of-gravity position at approximately 25 percent of the mean aerodynamic chord, a Mach number of 0.85, and an altitude of 28,000 feet. Results are presented as time histories, as plots of the variation of peak force per g with input duration, and as frequency-response plots. A number of frequency-response plots are included to illustrate the effects of choice of feel sources and gains. The results illustrate the desirability of balancing a normal-acceleration feel component with a pitching-acceleration feel component. Pitching-velocity feel is shown to be useful for shaping control-system frequency response. The results suggest the desirability of designing a control-feel system to a large extent by means of frequency-response analysis in order to keep the shapes of the frequency-response curves within desirable limits.
    Keywords: Aircraft Stability and Control
    Type: NASA-TN-D-912 , L-1641
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...