ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-05
    Description: The turbulent boundary layer (TBL) pressure field is an important source of cabin noise during cruise of high subsonic and supersonic commercial aircraft. The broadband character of this excitation field results in an interior noise spectrum that dominates the overall sound pressure level (SPL) and speech interference metrics in the forward and midcabins of many aircraft. In the authors' previous study, sound transmission through an aircraft fuselage, modeled by two concentric cylindrical sandwich shells and excited by a TBL statistical model was investigated analytically. An assessment of point and global structural vibration levels and resulting interior noise levels was obtained for different TBL models, flight conditions and fuselage structural designs. However, due to the complication of the shell structure, the important noise transmission mechanisms were difficult to discern. Previous experience has demonstrated that a fundamental understanding of the range of modes (or wavenumbers) generated by the TBL source both in the structure and the acoustic cavity is key to the development of both active and passive control technologies. In an initial effort to provide this insight, the objective of this paper is to develop an analytical model of sound transmission through a simple unstiffened cylindrical aluminum shell excited by a TBL pressure field. The description of the turbulent pressure field is based on the Corcos formulation for the cross-spectral density (CSD) of the pressure fluctuations. The coupled shell and interior and exterior acoustic equations are solved for the structural displacement and the interior acoustic response using a Galerkin approach to obtain analytical solutions. Specifically, this study compares the real part of the normalized CSD of the TBL excitation field, the structural displacement and the interior acoustic field. Further the modal compositions of the structural and cavity response are examined and some inference of the dominant mechanism of noise transmission is made.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-27
    Description: The X-33 flight visualization effort has resulted in the integration of high-resolution terrain data with vehicle position and attitude data for planned flights of the X-33 vehicle from its launch site at Edwards AFB, California, to landings at Michael Army Air Field, Utah, and Maelstrom AFB, Montana. Video and Web Site representations of these flight visualizations were produced. In addition, a totally new module was developed to control viewpoints in real-time using a joystick input. Efforts have been initiated, and are presently being continued, for real-time flight coverage visualizations using the data streams from the X-33 vehicle flights. The flight visualizations that have resulted thus far give convincing support to the expectation that the flights of the X-33 will be exciting and significant space flight milestones... flights of this nation's one-half scale predecessor to its first single-stage-to-orbit, fully-reusable launch vehicle system.
    Keywords: Aircraft Design, Testing and Performance
    Type: Space Technology and Applications International Forum (STAIF); 31 Jan. 4 Feb. 1999; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The validation of finite element and boundary element model for the vibro-acoustic response of a curved honeycomb core composite aircraft panel is completed. The finite element and boundary element models were previously validated separately. This validation process was hampered significantly by the method in which the panel was installed in the test facility. The fixture used was made primarily of fiberboard and the panel was held in a groove in the fiberboard by a compression fitting made of plastic tubing. The validated model is intended to be used to evaluate noise reduction concepts from both an experimental and analytic basis simultaneously. An initial parametric study of the influence of core thickness on the radiated sound power from this panel, using this numerical model was subsequently conducted. This study was significantly influenced by the presence of strong boundary condition effects but indicated that the radiated sound power from this panel was insensitive to core thickness primarily due to the offsetting effects of added mass and added stiffness in the frequency range investigated.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 2003-3156 , 9th AIAA/CEAS Aeroacoustics Conference and Exhibition; May 12, 2003 - May 14, 2003; Hilton Head, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Supersonic aircraft designers must shape the outer mold line of the aircraft to improve multiple objectives, such as mission performance, cruise efficiency, and sonic-boom signatures. Conceptual designers have demonstrated an ability to assess these objectives for a large number of candidate designs. Other critical objectives and constraints, such as weight, fuel volume, aeroelastic effects, and structural soundness, are more difficult to address during the conceptual design process. The present research adds both static structural analysis and sizing to an existing conceptual design framework. The ultimate goal is to include structural analysis in the multidisciplinary optimization of a supersonic aircraft. Progress towards that goal is discussed and demonstrated.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper-2012-1753 , NF1676L-13121 , 53rd Structures, Structural Dynamics and Materials Conference; Apr 23, 2012 - Apr 26, 2012; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Composite structures are often used in aircraft because of the advantages offered by a high strength to weight ratio. However, the acoustical properties of these light and stiff structures can often be less than desirable resulting in high aircraft interior noise levels. In this paper, measurements and predictions of the transmission loss of a curved honeycomb composite panel are presented. The transmission loss predictions are validated by comparisons to measurements. An assessment of the behavior of the panel is made from the dispersion characteristics of transverse waves propagating in the panel. The speed of transverse waves propagating in the panel is found to be sonic or supersonic over the frequency range from 100 to 5000 Hz. The acoustical benefit of reducing the wave speed for transverse vibration is demonstrated.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 2003-3157 , 9th AIAA/CEAS Aeroacoustics Conference and Exhibition; May 12, 2003 - May 14, 2003; Hilton Head, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...