ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (5)
  • Meteorology and Climatology  (4)
  • Aircraft Design, Testing and Performance  (1)
  • 2005-2009  (5)
  • 2007  (5)
  • 1
    Publication Date: 2019-07-19
    Description: To accurately model radiative fluxes at the surface and within the atmosphere, we need to know both vertical and horizontal structures of cloudiness. While MODIS provides accurate information on cloud horizontal structure, it has limited ability to estimate cloud vertical structure. ICESat/GLAS on the other hand, provides the vertical distribution and internal structure of clouds as deep as the laser beam can penetrate and return a signal. Having different orbits, MODIS and GLAS provide few collocated measurements; hence a statistical approach is needed to learn about 3D cloud structures from the two instruments. In the presentation, we show the results of the statistical analysis of vertical and horizontal structure of cloudiness using GLAS and MODIS cloud top(s) data acquired in October-November 2003. We revisit the (H1, C1) plot, previously used for analyzing cloud liquid water data, and illustrate cloud structure for single and multiple-layer clouds.
    Keywords: Meteorology and Climatology
    Type: 2007 International Union of Geodesy and Geophysics; Jul 02, 2007 - Jul 13, 2007; Perugia; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Lightning is responsible for an estimated 15 percent of total NO emissions, and is one of the most prominent sources in the upper troposphere. In this study, we present evidence of lightning-generated NO2 (LNO2) using data from the Ozone Monitoring Instrument (OMI), which has observed tropospheric NO2 since its launch in 2004. Although LNO2 has been also reported in previous satellite studies from the Global Ozone Monitoring Experiment (GOME) and SCIAMACHY, OMI is better suited for such measurements by virtue of its higher spatial resolution and daily global coverage. We will present data clearly showing the LNO2 signal in the OMI tropospheric NO2 product on two days over and downwind of specific convective systems in the US Midwest. Gridded monthly mean tropospheric NO 2 data are subtracted from the daily gridded data to obtain the presumed LNO2 signal. Observed cloud-to-ground (CG) lightning flashes from the National Lightning Detection Network (NLDN) were counted along middle and upper tropospheric back trajectories that were run from the regions containing the LNO2 signal. A vertically-weighted average number of upwind CG flashes was obtained using a profile of LNO(x) mass obtained from a series of midlatitude cloud-resolved storm chemistry simulations. The number of CG flashes was scaled up to total flashes (intracloud (IC) flashes plus CG) using a climatological IC/CG ratio. The number of moles of LNO(x) in the region considered was estimated by assuming that LNO2 is 30 percent of LNO(x). This value was divided by the number of upwind flashes to obtain an average estimate of the number of moles produced per flash. Results yield values in the range obtained through other estimation techniques (e.g., aircraft measurements, models). We will also present a similar analysis over northern Australia during the SCOUT-O3/ACTIVE field campaigns in November and December 2005, in which we will compare the OMI LNOx signals with aircraft observations from the storm anvils.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: We combine satellite gravity data from the Gravity Recovery and Climate Experiment (GRACE) and precipitation measurements from the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center's (CPC) Merged Analysis of Precipitation (CMAP) and the Tropical Rainfall Measuring Mission (TRMM), over the period from mid-2002 to mid-2006, to investigate the relative importance of sink (runoff and evaporation) and source (precipitation) terms in the hydrological balance of the Amazon Basin. When linear and quadratic terms are removed, the time series of land water storage variations estimated from GRACE exhibits a dominant annual signal of 250 mm peak-to-peak, which is equivalent to a water volume change of approximately 1800 cubic kilometers. A comparison of this trend with accumulated (i.e., integrated) precipitation shows excellent agreement and no evidence of basin saturation. The agreement indicates that the net runoff and evaporation contributes significantly less than precipitation to the annual hydrological mass balance. Indeed, raw residuals between the detrended water storage and precipitation anomalies range from plus or minus 40 mm. This range is consistent with streamflow measurements from the region, although the latter are characterized by a stronger annual signal than ow residuals, suggesting that runoff and evaporation may act to partially cancel each other.
    Keywords: Meteorology and Climatology
    Type: Journal of Geodesy (ISSN 0949-7714); 82; 1; 9-13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The free-air gravity trend over Canada, derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission, robustly isolates the gravity signal associated with glacial isostatic adjustment (GIA) from the longer-time scale mantle convection process. This trend proves that the ancient Laurentian ice complex was composed of two large domes to the west and east of Hudson Bay, in accord with one of two classes of earlier reconstructions. Moreover, GIA models that reconcile the peak rates contribute approximately 25 to approximately 45% to the observed static gravity field, which represents an important boundary condition on the buoyancy of the continental tectosphere.
    Keywords: Meteorology and Climatology
    Type: Science; 316; 5826; 881-883
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-14
    Description: The Helios Prototype was originally planned to be two separate vehicles, but because of resource limitations only one vehicle was developed to demonstrate two missions. The vehicle consisted of two configurations, one for each mission. One configuration, designated HP01, was designed to operate at extremely high altitudes using batteries and high-efficiency solar cells spread across the upper surface of its 247-foot wingspan. On August 13, 2001, the HP01 configuration reached an altitude of 96,863 feet, a world record for sustained horizontal flight by a winged aircraft. The other configuration, designated HP03, was designed for long-duration flight. The plan was to use the solar cells to power the vehicle's electric motors and subsystems during the day and to use a modified commercial hydrogen-air fuel cell system for use during the night. The aircraft design used wing dihedral, engine power, elevator control surfaces, and a stability augmentation and control system to provide aerodynamic stability and control. At about 30 minutes into the second flight of HP03, the aircraft encountered a disturbance in the way of turbulence and morphed into an unexpected, persistent, high dihedral configuration. As a result of the persistent high dihedral, the aircraft became unstable in a very divergent pitch mode in which the airspeed excursions from the nominal flight speed about doubled every cycle of the oscillation. The aircraft s design airspeed was subsequently exceeded and the resulting high dynamic pressures caused the wing leading edge secondary structure on the outer wing panels to fail and the solar cells and skin on the upper surface of the wing to rip away. As a result, the vehicle lost its ability to maintain lift, fell into the Pacific Ocean within the confines of the U.S. Navy's Pacific Missile Range Facility, and was destroyed. This paper describes the mishap and its causes, and presents the technical recommendations and lessons learned for improving the design, analysis, and testing methods and techniques required for this class of vehicle.
    Keywords: Aircraft Design, Testing and Performance
    Type: NATO/RTO AVT-145 Workshop on Design Concepts, Processes and Criteria for UAV Structural Integrity; May 14, 2007 - May 18, 2007; Florence; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...