ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (29)
  • Earth Resources and Remote Sensing  (11)
  • Aircraft Communications and Navigation  (9)
  • Electronics and Electrical Engineering  (9)
  • 2005-2009  (14)
  • 1995-1999  (15)
  • 1
    Publication Date: 2019-07-13
    Description: This paper discusses the process and results of the performance testing of the GPS receiver planned for use on the International Space Station (ISS) and the X-38 Crew Return Vehicle (CRV). The receiver is a Force-19 unit manufactured by Trimble Navigation and modified in software by the NASA Goddard Space Flight Center (GSFC) to perform navigation and attitude determination in space. The receiver is the primary source of navigation and attitude information for ISS and CRV. Engineers at GSFC have developed and tested the new receiver with a Global Simulation Systems Ltd (GSS) GPS Signal Generator (GPSSG). This paper documents the unique aspects of ground testing a GPS receiver that is designed for use in space. A discussion of the design of tests using the GPSSG, documentation, data capture, data analysis, and lessons learned will precede an overview of the performance of the new receiver. A description of the challenges that were overcome during this testing exercise will be presented. Results from testing show that the receiver will be within or near the specifications for ISS attitude and navigation performance. The process for verifying other requirements such as Time to First Fix, Time to First Attitude, selection/deselection of a specific GPS satellite vehicles (SV), minimum signal strength while still obtaining attitude and navigation, navigation and attitude output coverage, GPS week rollover, and Y2K requirements are also given in this paper.
    Keywords: Aircraft Communications and Navigation
    Type: GPS Conference; Sep 14, 1999 - Sep 17, 1999; Nashville, TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: The Southern Great Plains 1997 (SGP97) field experiment was conducted in Oklahoma during June-July 1997 to validate the models used for computing remote soil moisture using measurements by microwave radiometers. One of the objectives of SGP97 was to examine the effect of soil moisture on the evolution of the Atmospheric Boundary Layer (ABL) and clouds over the Southern Great Plains (SGP) during the warm season. The LASE (Lidar Atmospheric Sensing Experiment) airborne DIAL (Differential Absorption Lidar) system, which was flown autonomously on the NASA ER-2 aircraft during previous missions, was reconfigured to fly on the NASA P3 research aircraft. During SGP97 LASE was used to study the morning evolution of the ABL, particularly as manifested in the development of the convective boundary layer, and to study the influence of soil moisture variations on the development of ABL. The ABL development is strongly influenced by the surface energy budget, which is in turn influenced by soil moisture, mesoscale meteorology, clouds, and solar insolation. LASE data acquired during this mission are being used to study the ABL water vapor budget, the development of the ABL, spatial and temporal variabilities in the ABL, and the meteorological factors that influence the ABL development. This field experiment also permitted comparisons of LASE water vapor measurements with water vapor profiles acquired by radiosondes launched at the DOE (Department of Energy) Atmospheric Radiation Measurement (ARM) Southern Great Plain (SGP) site and at NASA/Wallops Flight Facility, as well as with measurements from other SGP97 aircraft.
    Keywords: Earth Resources and Remote Sensing
    Type: Nineteenth International Laser Radar Conference; 261-264; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: This paper addresses the accuracy of radiation-induced upset-rate predictions in space using the results of ground-based measurements together with standard environmental and device models. The study is focused on two part types - 16 Mb NEC DRAM's (UPD4216) and 1 Kb SRAM's (AMD93L422) - both of which are currently in space on board the Microelectronics and Photonics Test Bed (MPTB). To date, ground-based measurements of proton-induced single event upset (SEM cross sections as a function of energy have been obtained and combined with models of the proton environment to predict proton-induced error rates in space. The role played by uncertainties in the environmental models will be determined by comparing the modeled radiation environment with the actual environment measured aboard MPTB. Heavy-ion induced upsets have also been obtained from MPTB and will be compared with the "predicted" error rate following ground testing that will be done in the near future. These results should help identify sources of uncertainty in predictions of SEU rates in space.
    Keywords: Electronics and Electrical Engineering
    Type: Nuclear Instruments and Methods in Physics Research
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other space-borne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (〈 about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so we first calibrate the reflected solar radiation received by the photon-counting detectors of GLAS' 532 nm channel, which is the primary channel for atmospheric products. The solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (I) calibration with coincident airborne and GLAS observations; (2) calibration with coincident Geostationary Operational Environmental Satellite (GOES) and GLAS observations of deep convective clouds; (3) calibration from the first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retrievals is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-06
    Description: Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the MOderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30 m to 1 km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600 ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400 m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important.
    Keywords: Earth Resources and Remote Sensing
    Type: Remote Sensing Environment (ISSN 0034-4257); Volume 113; Issue 11; 2366-2379
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: A new aircraft arrival planning and optimization algorithm has been incorporated into the Final Approach Spacing Tool (FAST) in the Center-TRACON Automation System (CTAS) developed at NASA-Ames Research Center. FAST simulations have been conducted over three years involving full-proficiency, level five air traffic controllers from around the United States. From these simulations an algorithm, called Spatial Constraint Satisfaction, has been designed, coded, undergone testing, and soon will begin field evaluation at the Dallas-Fort Worth and Denver International airport facilities. The purpose of this new design is an attempt to show that the generation of efficient and conflict free aircraft arrival plans at the runway does not guarantee an operationally acceptable arrival plan upstream from the runway -information encompassing the entire arrival airspace must be used in order to create an acceptable aircraft arrival plan. This new design includes functions available previously but additionally includes necessary representations of controller preferences and workload, operationally required amounts of extra separation, and integrates aircraft conflict resolution. As a result, the Spatial Constraint Satisfaction algorithm produces an optimized aircraft arrival plan that is more acceptable in terms of arrival procedures and air traffic controller workload. This paper discusses the current Air Traffic Control arrival planning procedures, previous work in this field, the design of the Spatial Constraint Satisfaction algorithm, and the results of recent evaluations of the algorithm.
    Keywords: Aircraft Communications and Navigation
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-18
    Description: A prototype decision support tool for terminal area air traffic controllers, referred to as the Final Approach Spacing Tool (FAST), was recently evaluated in operation with live air traffic at the Dallas/Fort Worth Terminal Radar Approach Control (TRACON) facility in the United States. Controllers utilized the FAST system's runway assignment and sequence advisories to manage and control arrival traffic during more than twenty five peak rush traffic periods. The system performed well resulting in capacity increases at the airport of 10-20% depending on weather and airport conditions. As a result of these tests, the US Federal Aviation Administration (FAA) is proceeding with plans to further develop the prototype FAST system for national deployment at five to ten TRACONs within the United States during the next five years. This paper will present the results of these tests including data on the FAST system impact on airport capacity, aircraft flight times in the terminal area, delay reduction, tower operations including ground movement, and human factors data including workload assessments.
    Keywords: Aircraft Communications and Navigation
    Type: Transportation Systems 1997; Jun 16, 1997 - Jun 18, 1997; Chania; Greece
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The NASA Goddard Space Flight Center (GSFC) Global Positioning System (GPS) applications test facility has been established within the GSFC Guidance Navigation and Control Center. The GPS test facility is currently housing the Global Simulation Systems Inc. (GSSI) STR2760 GPS satellite 40-channel attitude simulator and a STR4760 12-channel navigation simulator. The facility also contains a few other resources such as an atomic time standard test bed, a rooftop antenna platform and a radome. It provides a new capability for high dynamics GPS simulations of space flight that is unique within the aerospace community. The GPS facility provides a critical element for the development and testing of GPS based technologies i.e. position, attitude and precise time determination used on-board a spacecraft, suborbital rocket or balloon. The GPS simulator system is configured in a transportable rack and is available for GPS component development as well as for component, spacecraft subsystem and system level testing at spacecraft integration and test sites. The GPS facility has been operational since early 1996 and has been utilized by space flight projects carrying GPS experiments, such as the OrbView-2 and the Argentine SAC-A spacecrafts. The SAC-A pre-flight test data obtained by using the STR2760 simulator and the comparison with preliminary analysis of the GPS data from SAC-A telemetry are summarized. This paper describes pre-flight tests and simulations used to support a unique spaceborne GPS experiment. The GPS experiment mission objectives and the test program are described, as well as the GPS test facility configuration needed to verify experiment feasibility. Some operational and critical issues inherent in GPS receiver pre-flight tests and simulations using this GPS simulator, and test methodology are described. Simulation and flight data are presented. A complete program of pre-flight testing of spaceborne GPS receivers using a GPS constellation simulator is detailed.
    Keywords: Aircraft Communications and Navigation
    Type: ION GPS 1999 Conference; Sep 14, 1999 - Sep 17, 1999; Nashville, TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The NASA Goddard Space Flight Center (GSFC) Global Positioning System (GPS) applications test facility has been established within the GSFC Guidance Navigation and Control Center. The GPS test facility is currently housing the Global Simulation Systems Inc. (GSSI) STR2760 GPS satellite 40-channel attitude simulator and a STR4760 12-channel navigation simulator. The facility also contains a few other resources such as an atomic time standard test bed, a rooftop antenna platform and a radome. It provides a new capability for high dynamics GPS simulations of space flight that is unique within the aerospace community. The GPS facility provides a critical element for the development and testing of GPS based technologies i.e. position, attitude and precise time determination used on-board a spacecraft, suborbital rocket balloon. The GPS simulation system is configured in a transportable rack and is available for GPS component development as well as for component, spacecraft subsystem and system level testing at spacecraft integration and tests sites. The GPS facility has been operational since early 1996 and has utilized by space flight projects carrying GPS experiments, such as the OrbView-2 and the Argentine SAC-A spacecrafts. The SAC-A pre-flight test data obtained by using the STR2760 simulator and the comparison with preliminary analysis of the GPS data from SAC-A telemetry are summarized. This paper describes pre-flight tests and simulations used to support a unique spaceborne GPS experiment. The GPS experiment mission objectives and the test program are described, as well as the GPS test facility configuration needed to verify experiment feasibility. Some operational and critical issues inherent in GPS receiver pre-flight tests and simulations using this GPS simulation, and test methodology are described. Simulation and flight data are presented. A complete program of pre-flight testing of spaceborne GPS receivers using a GPS constellation simulator is detailed.
    Keywords: Aircraft Communications and Navigation
    Type: ION GPS 1999; Sep 14, 1999 - Sep 17, 1999; Nashville, TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: A knowledge-based method for scheduling arrival aircraft in the terminal area has been implemented and tested in real-time simulation. The scheduling system automatically sequences, assigns landing times, and assigns runways to arrival aircraft by utilizing continuous updates of aircraft radar data and controller inputs. The scheduling algorithms is driven by a knowledge base which was obtained in over two thousand hours of controller-in-the-loop real-time simulation. The knowledge base contains a series of hierarchical 'rules' and decision logic that examines both performance criteria, such as delay reduction, as well as workload reduction criteria, such as conflict avoidance. The objective of the algorithms is to devise an efficient plan to land the aircraft in a manner acceptable to the air traffic controllers. This paper will describe the scheduling algorithms, give examples of their use, and present data regarding their potential benefits to the air traffic system.
    Keywords: Aircraft Communications and Navigation
    Type: NASA-TM-111254 , NAS 1.15:111254 , AIAA Paper 95-3366 , AIAA Guidance, Navigation, and Control Conference; Aug 07, 1995 - Aug 10, 1995; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...