ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 4324–4339, doi:10.1002/2014JC010547.
    Description: In the coastal ocean off the Northeast U.S., the sea surface temperature (SST) in the first half of 2012 was the highest on the record for the past roughly 150 years of recorded observations. The underlying dynamical processes responsible for this extreme event are examined using a numerical model, and the relative contributions of air-sea heat flux versus lateral ocean advective heat flux are quantified. The model accurately reproduces the observed vertical structure and the spatiotemporal characteristics of the thermohaline condition of the Gulf of Maine and the Middle Atlantic Bight waters during the anomalous warming period. Analysis of the model results show that the warming event was primarily driven by the anomalous air-sea heat flux, while the smaller contribution by the ocean advection worked against this flux by acting to cool the shelf. The anomalous air-sea heat flux exhibited a shelf-wide coherence, consistent with the shelf-wide warming pattern, while the ocean advective heat flux was dominated by localized, relatively smaller-scale processes. The anomalous cooling due to advection primarily resulted from the along-shelf heat flux divergence in the Gulf of Maine, while in the Middle Atlantic Bight the advective contribution from the along-shelf and cross-shelf heat flux divergences was comparable. The modeling results confirm the conclusion of the recent analysis of in situ data by Chen et al. (2014a) that the changes in the large-scale atmospheric circulation in the winter of 2011–2012 primarily caused the extreme warm anomaly in the spring of 2012. The effect of along-shelf or cross-shelf ocean advection on the warm anomalies from either the Scotian Shelf or adjacent continental slope was secondary.
    Description: K.C. was supported by the Woods Hole Oceanographic Institution Postdoctoral Scholar program, the Coastal Ocean Institute, and the National Science Foundation (NSF) under grant OCE-1435602. G.G.G. was supported by NSF grants OCE-1435602 and OCE-1129125. Y.-O.K. was supported by the NSF grant OCE-1435602. W.G.Z. was supported by the NSF grant OCE-1129125.
    Description: 2015-12-15
    Keywords: Extreme temperature ; Heat budget ; Northeast U.S. coastal ocean ; Numerical modeling ; Air-sea interaction ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 42 (2015): 7687–7695, doi:10.1002/2015GL065530.
    Description: Onshore intrusions of offshore waters onto the Mid-Atlantic Bight shelf can greatly affect shelf circulation, biogeochemistry, and fisheries. Previous studies have concentrated on onshore intrusions of slope water. Here we present a direct intrusion of Gulf Stream warm-core ring water onto the shelf representing a previously unknown exchange process at the shelfbreak. Impingement of warm-core rings at the shelfbreak generates along-isobath intrusions that grow like Pinocchio's nose, extending hundreds of kilometers to the southwest. By combining satellite and Ocean Observatory Initiative Pioneer Array data and idealized numerical simulations, we discover that the intrusion results from topographically induced vorticity variation of the ring water, rather than from entrainment of the shelfbreak frontal jet. This intrusion of the Gulf Stream ring water has important biogeochemical implications and could facilitate migration of marine species across the shelfbreak barrier and transport low-nutrient surface Gulf Stream ring water to the otherwise productive shelfbreak region.
    Description: National Science Foundation Grant Number: OCE-1129125
    Keywords: Mid-Atlantic Bight ; Cross-shelf exchange ; Onshore intrusion ; Warm-core ring ; OOI Pioneer Array ; Vorticity dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-19
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans, 123(11), (2018): 7795-7818. doi: 10.1029/2018JC013794.
    Description: This work studies the subduction of the shelf water along the onshore edge of a warm‐core ring that impinges on the edge of the Mid‐Atlantic Bight continental shelf. The dynamical analysis is based on observations by satellites and from the Ocean Observatories Initiative Pioneer Array observatory as well as idealized numerical model simulations. They together show that frontogenesis‐induced submesoscale frontal subduction with order‐one Rossby and Froude numbers occurs on the onshore edge of the ring. The subduction flow results from the onshore migration of the warm‐core ring that intensifies the density front on the interface of the ring and shelf waters. The subduction is a part of the cross‐front secondary circulation trying to relax the intensifying density front. The dramatically different physical and biogeochemical properties of the ring and shelf waters provide a great opportunity to visualize the subduction phenomenon. Entrained by the ring‐edge current, the subducted shelf water is subsequently transported offshore below a surface layer of ring water and alongside of the surface‐visible shelf‐water streamer. It explains the historical observations of isolated subsurface packets of shelf water along the ring periphery in the slope sea. Model‐based estimate suggests that this type of subduction‐associated subsurface cross‐shelfbreak transport of the shelf water could be substantial relative to other major forms of shelfbreak water exchange. This study also proposes that outward spreading of the ring‐edge front by the frontal subduction may facilitate entrainment of the shelf water by the ring‐edge current and enhances the shelf‐water streamer transport at the shelf edge.
    Description: W. G. Z. was supported by the National Science Foundation under grants OCE‐1657853, OCE‐1657803, and OCE 1634965. JP is grateful for the support of the Woods Hole Oceanographic Institution Summer Student Fellow Program in 2016 and 2017. W. G. Z. thanks Kenneth Brink, Glen Gawarkiewicz, Rocky Geyer, Steven Lentz, Dennis McGillicuddy, Robert Todd, and John Trowbridge for helpful discussions during the course of the study or useful comments on earlier versions of the manuscript. The satellite sea surface temperature data were obtained from the University of Delaware Ocean Exploration, Remote Sensing, Biogeography Lab (led by Matthew Oliver), through the Mid‐Atlantic Coastal Ocean Observing System (MARACOOS) data server (http://tds.maracoos.org/thredds/catalog.html). The OOI Pioneer Array mooring and glider data presented in this paper were downloaded from the National Science Foundation OOI data portal (http://ooinet.oceanobservatories.org) in July–August 2016.
    Description: 2019-04-15
    Keywords: Frontal subduction ; Warm‐core ring ; Mid‐Atlantic Bight ; Shelf‐water streamer ; Cross‐shelf exchange ; OOI Pioneer Array
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...