ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 34 (2007): L10601, doi:10.1029/2006GL028790.
    Description: Air-water gas transfer influences CO2 and other climatically important trace gas fluxes on regional and global scales, yet the magnitude of the transfer is not well known. Widely used models of gas exchange rates are based on empirical relationships linked to wind speed, even though physical processes other than wind are known to play important roles. Here the first field investigations are described supporting a new mechanistic model based on surface water turbulence that predicts gas exchange for a range of aquatic and marine processes. Findings indicate that the gas transfer rate varies linearly with the turbulent dissipation rate to the inline equation power in a range of systems with different types of forcing - in the coastal ocean, in a macro-tidal river estuary, in a large tidal freshwater river, and in a model (i.e., artificial) ocean. These results have important implications for understanding carbon cycling.
    Description: This research was performed and the manuscript prepared with support from: the National Science Foundation (OCE-03-27256, OCE-05-26677, ATM 01-20569, and DEB-05-32075), the Office of Naval Research Young Investigator Program (N00014-04-1-0621), the Hudson River Foundation (010/02A), NOAA (NA03OAR4320179), the Marie Curie Training Site Fellowship (HPMFCT- 2002-01865), the NERC (NER/B/S/2003/00844), the David and Lucille Packard Foundation, and the LDEO Climate Center.
    Keywords: Air-sea gas exchange ; Turbulent dissipation rate ; Carbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...