ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Air-sea carbon flux  (1)
  • Climate warming  (1)
Collection
Keywords
Years
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 23 (2009): GB1005, doi:10.1029/2008GB003349.
    Description: We synthesize estimates of the contemporary net air-sea CO2 flux on the basis of an inversion of interior ocean carbon observations using a suite of 10 ocean general circulation models (Mikaloff Fletcher et al., 2006, 2007) and compare them to estimates based on a new climatology of the air-sea difference of the partial pressure of CO2 (pCO2) (Takahashi et al., 2008). These two independent flux estimates reveal a consistent description of the regional distribution of annual mean sources and sinks of atmospheric CO2 for the decade of the 1990s and the early 2000s with differences at the regional level of generally less than 0.1 Pg C a−1. This distribution is characterized by outgassing in the tropics, uptake in midlatitudes, and comparatively small fluxes in thehigh latitudes. Both estimates point toward a small (∼ −0.3 Pg C a−1) contemporary CO2 sink in the Southern Ocean (south of 44°S), a result of the near cancellation between a substantial outgassing of natural CO2 and a strong uptake of anthropogenic CO2. A notable exception in the generally good agreement between the two estimates exists within the Southern Ocean: the ocean inversion suggests a relatively uniform uptake, while the pCO2-based estimate suggests strong uptake in the region between 58°S and 44°S, and a source in the region south of 58°S. Globally and for a nominal period between 1995 and 2000, the contemporary net air-sea flux of CO2 is estimated to be −1.7 ± 0.4 Pg C a−1 (inversion) and −1.4 ± 0.7 Pg C a−1 (pCO2-climatology), respectively, consisting of an outgassing flux of river-derived carbon of ∼+0.5 Pg C a−1, and an uptake flux of anthropogenic carbon of −2.2 ± 0.3 Pg C a−1 (inversion) and −1.9 ± 0.7 Pg C a−1 (pCO2-climatology). The two flux estimates also imply a consistent description of the contemporary meridional transport of carbon with southward ocean transport throughout most of the Atlantic basin, and strong equatorward convergence in the Indo-Pacific basins. Both transport estimates suggest a small hemispheric asymmetry with a southward transport of between −0.2 and −0.3 Pg C a−1 across the equator. While the convergence of these two independent estimates is encouraging and suggests that it is now possible to provide relatively tight constraints for the net air-sea CO2 fluxes at the regional basis, both studies are limited by their lack of consideration of long-term changes in the ocean carbon cycle, such as the recent possible stalling in the expected growth of the Southern Ocean carbon sink.
    Description: Core financial support for this study came from the National Aeronautics and Space Administration under grant NAG5-12528 to NG and SMF, with additional support by the U.S. National Science Foundation. M. Gloor was supported by the EBI nd EEE institutes at the University of Leeds. M. Gerber, SM, FJ, and AM thank the European Commission for support through CarboOcean (511176-2) and the NOCES project (EVK2-CT-2001- 00134). TT has been supported by NOAA grant NAO30AR4320179P27.
    Keywords: Air-sea carbon flux ; Carbon flux ; Anthropogenic CO2
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 18 (2004): GB3003, doi:10.1029/2003GB002134.
    Description: We examine six different coupled climate model simulations to determine the ocean biological response to climate warming between the beginning of the industrial revolution and 2050. We use vertical velocity, maximum winter mixed layer depth, and sea ice cover to define six biomes. Climate warming leads to a contraction of the highly productive marginal sea ice biome by 42% in the Northern Hemisphere and 17% in the Southern Hemisphere, and leads to an expansion of the low productivity permanently stratified subtropical gyre biome by 4.0% in the Northern Hemisphere and 9.4% in the Southern Hemisphere. In between these, the subpolar gyre biome expands by 16% in the Northern Hemisphere and 7% in the Southern Hemisphere, and the seasonally stratified subtropical gyre contracts by 11% in both hemispheres. The low-latitude (mostly coastal) upwelling biome area changes only modestly. Vertical stratification increases, which would be expected to decrease nutrient supply everywhere, but increase the growing season length in high latitudes. We use satellite ocean color and climatological observations to develop an empirical model for predicting chlorophyll from the physical properties of the global warming simulations. Four features stand out in the response to global warming: (1) a drop in chlorophyll in the North Pacific due primarily to retreat of the marginal sea ice biome, (2) a tendency toward an increase in chlorophyll in the North Atlantic due to a complex combination of factors, (3) an increase in chlorophyll in the Southern Ocean due primarily to the retreat of and changes at the northern boundary of the marginal sea ice zone, and (4) a tendency toward a decrease in chlorophyll adjacent to the Antarctic continent due primarily to freshening within the marginal sea ice zone. We use three different primary production algorithms to estimate the response of primary production to climate warming based on our estimated chlorophyll concentrations. The three algorithms give a global increase in primary production of 0.7% at the low end to 8.1% at the high end, with very large regional differences. The main cause of both the response to warming and the variation between algorithms is the temperature sensitivity of the primary production algorithms. We also show results for the period between the industrial revolution and 2050 and 2090.
    Description: J. L. Sarmiento and R. Slater were supported by the NOAA Office of Global Programs grant NA56GP0439 to the Carbon Modeling Consortium for model development and by NSF grant OCE00973166 for model and observational interpretations as part of the JGOFS Synthesis and Modeling Project. R. Barber was supported by NSF grant OCE 0136270 as part of the JGOFS Synthesis and Modeling Project. S. Doney and J. Kleypas wish to thank the Community Climate System Model science team and the Climate Simulation Laboratory at NCAR and acknowledge support from NOAA-OGP grant NOAA-NA96GP0360S. Spall is funded through the UK Department for Environment, Food and Rural Affairs contract PECD 7/12/37.
    Keywords: Climate warming ; Ocean biogeochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...