ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-12
    Description: Small unmanned aerial systems (sUAS) have the potential for a large array of highly-beneficial applications. These applications are too numerous to comprehensively list, but include search and rescue, fire spotting, precision agriculture, etc. to name a few. Typically sUAS vehicles weigh less than 55 lbs and will be performing flight operations in the National Air Space (NAS). Certain sUAS applications, such as package delivery, will include operations in the close proximity of the general public. The full benefit from sUAS is contingent upon the resolution of several technological areas in order to provide an acceptable level of risk for widespread sUAS operations. Operations of sUAS vehicles pose risks to people and property on the ground as well as manned aviation. Several of the more significant sUAS technological areas include, but are not limited to: autonomous sense and avoid and deconfliction of sUAS from other sUAS and manned aircraft, communications and interfaces between the vehicle and human operators, and the overall reliability of the sUAS and constituent subsystems. While all of the technological areas listed contribute significantly to the safe execution of the sUAS flight operations, contingency or emergency systems can greatly contribute to sUAS risk mitigations to manage situations where the vehicle is in distress. The Safe2Ditch (S2D) system is an autonomous crash management system for sUAS. Its function is to enable sUAS to execute emergency landings and avoid injuring people on the ground, damaging property, and lastly preserving the sUAS and payload. A sUAS flight test effort was performed to test the integration of sub-elements of the S2D system with a representative sUAS multi-rotor.
    Keywords: Air Transportation and Safety
    Type: NASA/TM-2018-220110 , L-20971 , NF1676L-31598
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...