ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-17
    Description: Thunderstorms are high impact weather phenomena. They also pose an extremely challenging forecast problem. The National Oceanic and Atmospheric Administration (NOAA), the Federal Aviation Administration (FAA), the National Aeronautic and Space Administration (NASA), and the Air Force Weather Agency (AFWA), have decided to pool technology and scientific expertise into an unprecedented effort to better observe, diagnose, and forecast thunderstorms. This paper describes plans for an operational field test called the THunderstorm Operational Research (THOR) Project beginning in 2002, the primary goals of which are to: 1) Reduce the number of Thunderstorm-related Air Traffic Delays with in the National Airspace System (NAS) and, 2) Improve severe thunderstorm, tornado and airport thunderstorm warning accuracy and lead time. Aviation field operations will be focused on the prime air traffic bottleneck in the NAS, the airspace bounded roughly by Chicago, New York City and Washington D.C., sometimes called the Northeast Corridor. A variety of new automated thunderstorm forecasting applications will be tested here that, when implemented into FAA-NWS operations, will allow for better tactical decision making and NAS management during thunderstorm days. Severe thunderstorm operations will be centered on Northern Alabama. NWS meteorologists from the forecast office in Birmingham will test the utility of experimental lightning, radar, and profiler data from a mesoscale observing network being established by NASA's Marshall Space Flight Center. In addition, new tornado detection and thunderstorm nowcasting algorithms will be examined for their potential for improving warning accuracy. The Alabama THOR site will also serve as a test bed for new gridded, digital thunderstorm and flash flood warning products.
    Keywords: Air Transportation and Safety
    Type: 14th Conference on Numerical Weather Prediction; Jul 30, 2001 - Aug 02, 2001; Silver Spring, MD; United States|18th Conference on Weather Analysis and Forecasting; Jul 30, 2001 - Aug 02, 2001; Silver Spring, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Geostationary Lightning Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series will carry a GLM that will provide continuous day and night observations of lightning. The mission objectives for the GLM are to: (1) Provide continuous, full-disk lightning measurements for storm warning and nowcasting, (2) Provide early warning of tornadic activity, and (2) Accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997- present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms and applications. The science data will consist of lightning "events", "groups", and "flashes". The algorithm is being designed to be an efficient user of the computational resources. This may include parallelization of the code and the concept of sub-dividing the GLM FOV into regions to be processed in parallel. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama, Oklahoma, Central Florida, and the Washington DC Metropolitan area) are being used to develop the prelaunch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution.
    Keywords: Instrumentation and Photography
    Type: 2008 NOAA STAR GOES-R AWG Review; Jun 23, 2008 - Jun 26, 2008; Madison, Wi; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...