ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-17
    Description: Thunderstorms are high impact weather phenomena. They also pose an extremely challenging forecast problem. The National Oceanic and Atmospheric Administration (NOAA), the Federal Aviation Administration (FAA), the National Aeronautic and Space Administration (NASA), and the Air Force Weather Agency (AFWA), have decided to pool technology and scientific expertise into an unprecedented effort to better observe, diagnose, and forecast thunderstorms. This paper describes plans for an operational field test called the THunderstorm Operational Research (THOR) Project beginning in 2002, the primary goals of which are to: 1) Reduce the number of Thunderstorm-related Air Traffic Delays with in the National Airspace System (NAS) and, 2) Improve severe thunderstorm, tornado and airport thunderstorm warning accuracy and lead time. Aviation field operations will be focused on the prime air traffic bottleneck in the NAS, the airspace bounded roughly by Chicago, New York City and Washington D.C., sometimes called the Northeast Corridor. A variety of new automated thunderstorm forecasting applications will be tested here that, when implemented into FAA-NWS operations, will allow for better tactical decision making and NAS management during thunderstorm days. Severe thunderstorm operations will be centered on Northern Alabama. NWS meteorologists from the forecast office in Birmingham will test the utility of experimental lightning, radar, and profiler data from a mesoscale observing network being established by NASA's Marshall Space Flight Center. In addition, new tornado detection and thunderstorm nowcasting algorithms will be examined for their potential for improving warning accuracy. The Alabama THOR site will also serve as a test bed for new gridded, digital thunderstorm and flash flood warning products.
    Keywords: Air Transportation and Safety
    Type: 14th Conference on Numerical Weather Prediction; Jul 30, 2001 - Aug 02, 2001; Silver Spring, MD; United States|18th Conference on Weather Analysis and Forecasting; Jul 30, 2001 - Aug 02, 2001; Silver Spring, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: Hysteresis and wavenumber vacillation are studied numerically in a weakly stratified quasigeostrophic model. In general, the amplitude of the most unstable wave increases, as the flow becomes more unstable. When the wave becomes saturated, the next longer wave will grow at the expanse of the most unstable wave and becomes the dominant wave. However, once the longwave state is established, it may remain in that regime even as the instability is decreased beyond the threshold where it first developed, thus constituting a hysteresis loop. In a highly unstable case, the flow may not show a preference for any single wave. Instead, the dominant wave aperiodically varies among several long waves. This phenomenon is known as wavenumber vacillation. Hysteresis is further examined in terms of eddy heat flux. It is shown that total eddy heat flux increases as the flow becomes more unstable, but displays a sharp drop when transition to a longer wave occurs. However, in a longwave state, the heat flux always decreases with decreasing instability even pass the threshold when wave transition first occurs.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Wave Phenomena III: Waves in Fluids from the Microscopic to the Planetary Scale; Jun 11, 2001 - Jun 15, 2001; Edmonton; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...