ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-0832
    Keywords: Aflatoxin ; aflR ; Aspergillus parasiticus ; repressor ; sclerotia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Regulation of aflatoxin (AF) biosynthesis likely involves a complex interplay of positive- and negative-acting factors that are affected by physiological cues responsive to internal and external stimuli. These factors, presumably, modulate the expression of the AF pathway-specific regulatory gene, aflR, whose product, AFLR, a zinc cluster transcription factor, then turns on or off the transcription of other AF genes. To determine if the AFLR carboxyl region (AFLRC) interacts with positive-or negative-acting proteins, we fused the Aspergillus parasiticus aflR carboxyl coding region(aflRC) to the promoter of A. parasiticusnitrite reductase gene (niiA(p)::aflRC), and transformed it into A. parasiticus SRRC 2043. Transformants that contained two copies of niiA(p)::aflRC, one at the niaD locus and another at the aflR locus, over produced AF precursors independent of the nitrogen source. The higher copy number of the integrated niiA(p)::aflRC correlated with increased production of AF precursors by the transformants as well as increased expression of both aflRC and native aflR in potato dextrose broth and A & M medium. Since aflRC does not encode a DNA-binding domain, the expressed AFLRC should not bind to the promoters of AF pathway genes and affect transcription directly. The results are consistent with AFLRC titrating out a putative repressor that interacts with AFLR under different growth conditions and modulates AF biosynthesis. This interaction also indirectly affects sclerotial development.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Polyketide synthase gene ; Aflatoxin ; Aspergillus parasiticus ; Gene cluster Anthraquinone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Aflatoxins comprise a group of polyketide-derived carcinogenic mycotoxins produced byAspergillus parasiticus andAspergillus flavus. By transformation with a disruption construct, pXX, we disrupted the aflatoxin pathway inA. parasiticus SRRC 2043, resulting in the inability of this strain to produce aflatoxin intermediates as well as a major yellow pigment in the transformants. The disruption was attributed to a single-crossover, homologous integration event between pXX and the recipientA. parasiticus genome at a specific locus, designatedpksA. Sequence analysis suggest thatpksA is a homolog of theAspergillus nidulans wA gene, a polyketide synthase gene involved in conidial wall pigment biosynthesis. The conservedβ-ketoacyl synthase, acyltransferase and acyl carrier-protein domains were present in the deduced amino acid sequence of thepksA product. Noβ-ketoacyl reductase and enoyl reductase domains were found, suggesting thatpksA does not encode catalytic activities for processingβ-carbon similar to those required for long chain fatty acid synthesis. ThepksA gene is located in the aflatoxin pathway gene cluster and is linked to thenor-1 gene, an aflatoxin pathway gene required for converting norsolorinic acid to averantin. These two genes are divergently transcribed from a 1.5 kb intergenic region. We propose thatpksA is a polyketide synthase gene required for the early steps of aflatoxin biosynthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...