ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology (ISSN 1077-9248); Volume 7; 1; S63
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The effects of gravitational unloading with or without intact neural activity and/or tension development on myosin heavy chain (MHC) composition, cross-sectional area (CSA), number of myonuclei, and myonuclear domain (cytoplasmic volume per myonucleus ratio) in single fibers of both slow and fast muscles of rat hindlimbs are reviewed briefly. The atrophic response to unloading is generally graded as follows: slow extensors 〉 fast extensors 〉 fast flexors. Reduction of CSA is usually greater in the most predominant fiber type of that muscle. The percentage of fibers expressing fast MHC isoforms increases in unloaded slow but not fast muscles. Myonuclear number per mm of fiber length and myonuclear domain is decreased in the fibers of the unloaded predominantly slow soleus muscle, but not in the predominantly fast plantaris. Decreases in myonuclear number and domain, however, are observed in plantaris fibers when tenotomy, denervation, or both are combined with hindlimb unloading. All of these results are consistent with the view that a major factor for fiber atrophy is an inhibition or reduction of loading of the hindlimbs. These data also indicate that predominantly slow muscles are more responsive to unloading than predominantly fast muscles. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
    Keywords: Aerospace Medicine
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 30; 4; 777-81
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: Changes in the expression of heat shock protein 72 (HSP72) in response to atrophic-inducing perturbations of muscle involving chronic mechanical unloading and denervation were determined. Adult male Wistar rats were assigned randomly to a sedentary cage control (CON), hind limb unloading (HU, via tail suspension), HU plus tenotomy (HU + TEN), HU plus denervation (HU + DEN), or HU + TEN + DEN group. Tenotomy and DEN involved cutting the Achilles tendon and removing a segment of the sciatic nerve, respectively. After 5 days, HSP72 levels in the soleus of the HU + DEN and HU + TEN + DEN groups were 42 (P 〈 0.05) and 53% (P 〈 0.01) less than CON, respectively. Soleus weight decreased in both groups. Heat shock protein 72 levels in the plantaris of the HU + TEN, HU + DEN, and HU + TEN + DEN groups were 31, 25, and 30% lower than CON, respectively (P 〈 0.05). Plantaris weight decreased in the HU + DEN and HU + TEN + DEN, but not in the HU + TEN group. Hind limb unloading alone had little effect on the HSP72 level in either muscle. Reduced levels of HSP72 were associated with a decreased soleus (r=0.62, P 〈 0.01) and plantaris (r=0.78, P 〈 0.001) weight. These results indicate that the levels of HSP72 in both a slow and a fast rat plantarflexor are responsive to a chronic decrease in the levels of loading and/or activation and suggest that the neuromuscular activity level and the presence of innervation of a muscle are important factors that induce HSP72 expression.
    Keywords: Aerospace Medicine
    Type: Acta physiologica Scandinavica (ISSN 0001-6772); Volume 172; 2; 123-30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: BACKGROUND: Spaceflights of short duration (approximately 2 wk) result in adaptations in the size and/or metabolic properties of a select population of motoneurons located in the lumbosacral region of the rat spinal cord. A decrease in succinate dehydrogenase (SDH, an oxidative marker enzyme) activity of moderately sized (500-800 microm2) motoneurons in the retrodorsolateral region of the spinal cord (L6) has been observed after a 14-d flight. HYPOTHESIS: Our hypothesis was that exposure to short-term hypergravity would result in adaptations in the opposite direction, reflecting a continuum of morphological and biochemical responses in the spinal motoneurons from zero gravity to hypergravity. METHODS: Young, male rats were centrifuged at either 1.5 or 2.0 G for 2 wk. The size and SDH activity of a population of motoneurons in the retrodorsolateral region of the spinal cord (L5) were determined and compared with age-matched rats maintained at 1.0 G. The absolute and relative (to body weight) masses of the soleus, gastrocnemius, adductor longus and tibialis anterior muscles were compared among the three groups. RESULTS: There were no effects of either hypergravity intervention on the motoneuron properties. Rats maintained under hypergravity conditions gained less body mass than rats kept at 1.0 G. For the 1.5 and 2.0 G groups, the muscle absolute mass was smaller and relative mass similar to that observed in the 1.0 G rats, except for the adductor longus. The adductor longus absolute mass was similar to and the relative mass larger in both hypergravity groups than in the 1.0 G group. CONCLUSIONS: Our hypothesis was rejected. The findings suggest that rat motoneurons are more responsive to short-term chronic exposure to spaceflight than to hypergravity conditions.
    Keywords: Aerospace Medicine
    Type: Aviation, space, and environmental medicine (ISSN 0095-6562); Volume 72; 12; 1107-12
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: Antigravity function plays an important role in determining the morphological and physiological properties of the neuromuscular system. Inhibition of the normal development of the neuromuscular system is induced by hindlimb unloading during the neonatal period in rats. However, the role of gravitational loading on the development of skeletal muscle in rats is not well understood. It could be hypothesized that during the early postnatal period, i.e. when minimal weight-supporting activity occurs, the activity imposed by gravity would be of little consequence in directing the normal development of the skeletal musculature. We have addressed this issue by limiting the amount of postnatal weight-support activity of the hindlimbs of rats during the lactation period. We have focused on the development of three characteristics of the muscle fibers, i.e. size, myonuclear number and myosin heavy chain expression.
    Keywords: Aerospace Medicine
    Type: Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology (ISSN 1077-9248); Volume 7; 2; P27-30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: Growth hormone (GH) secretion is stimulated by aerobic and resistive exercise and inhibited by exposure to actual or simulated (bedrest, hindlimb suspension) microgravity. Moreover, hypothalamic growth hormone-releasing factor (GRF) and preproGRF mRNA are markedly decreased in spaceflight rats. These observations suggest that reduced sensory input from inactive muscles may contribute to the reduced secretion of GH seen in "0 G". Thus, the aim of this study was to determine the effect of muscle sensory nerve stimulation on secretion of GH. Fed male Wistar rats (304 +/- 23 g) were anesthetized (pentobarbital) and the right peroneal (Pe), tibial (T), and sural (S) nerves were cut. Electrical stimulation of the distal (D) or proximal (P) ends of the nerves was implemented for 15 min. to mimic the EMG activity patterns of ankle extensor muscles of a rat walking 1.5 mph. The rats were bled by cardiac puncture and their anterior pituitaries collected. Pituitary and plasma bioactive (BGH) and immunoactive (IGH) GH were measured by bioassay and RIA.
    Keywords: Aerospace Medicine
    Type: Jun 15, 1994 - Jun 18, 1994; Anaheim, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: In this review, myosin heavy chain (MHC) adaptations in response to several models of decreased neuromuscular activity (i.e. electrical activation and loading of a muscle) are evaluated. In each of these "reduced-activity" models it is important to: a) quantify the changes in electrical activation of the muscle as a result of the intervention; b) quantify the forces generated by the muscle; and c) determine whether the neuromuscular junction remains normal. Most of the models, including spaceflight, hindlimb suspension, spinal cord isolation, spinal cord transection, denervation, and limb immobilization in a shortened position, result in increases in the percentage of fast MHCs (or fast MHC mRNA) in normally slow rat muscles. It also can be inferred from histochemical data that increases in fast MHCs occur with TTX application and bed rest. The only "reduced-activity" model to consistently increase slow muscle myosin mRNA, and slow fibers is limb immobilization in a stretched position; however, this model results in at least a temporary increase in tension. It appears that the most common feature of these models that might induce MHC adaptations is the modification in loading rather than a change in the neuromuscular activity.
    Keywords: Aerospace Medicine
    Type: Basic and applied myology : BAM (ISSN 1120-9992); 5; 2; 117-37
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Earth's gravity has had a significant impact on the designs of the neuromotor systems that have evolved. Early indications are that gravity also plays a key role in the ontogenesis of some of these design features. The purpose of the present review is not to assess and interpret a body of knowledge in the usual sense of a review but to look ahead, given some of the general concepts that have evolved and observations made to date, which can guide our future approach to gravitational biology. We are now approaching an era in gravitational biology during which well-controlled experiments can be conducted for sustained periods in a microgravity environment. Thus it is now possible to study in greater detail the role of gravity in phylogenesis and ontogenesis. Experiments can range from those conducted on the simplest levels of organization of the components that comprise the neuromotor system to those conducted on the whole organism. Generally, the impact of Earth's gravitational environment on living systems becomes more complex as the level of integration of the biological phenomenon of interest increases. Studies of the effects of gravitational vectors on neuromotor systems have and should continue to provide unique insight into these mechanisms that control and maintain neural control systems designed to function in Earth's gravitational environment. A number of examples are given of how a gravitational biology perspective can lead to a clearer understanding of neuromotor disorders. Furthermore, the technologies developed for spaceflight studies have contributed and should continue to contribute to studies of motor dysfunctions, such as spinal cord injury and stroke. Disorders associated with energy support and delivery systems and how these functions are altered by sedentary life styles at 1 G and by space travel in a microgravity environment are also discussed.
    Keywords: Aerospace Medicine
    Type: Journal of applied physiology (Bethesda, Md. : 1985) (ISSN 8750-7587); 89; 3; 1224-31
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The chronic "unloading" of the neuromuscular system during spaceflight has detrimental functional and morphological effects. Changes in the metabolic and mechanical properties of the musculature can be attributed largely to the loss of muscle protein and the alteration in the relative proportion of the proteins in skeletal muscle, particularly in the muscles that have an antigravity function under normal loading conditions. These adaptations could result in decrements in the performance of routine or specialized motor tasks, both of which may be critical for survival in an altered gravitational field, i.e., during spaceflight and during return to 1 G. For example, the loss in extensor muscle mass requires a higher percentage of recruitment of the motor pools for any specific motor task. Thus, a faster rate of fatigue will occur in the activated muscles. These consequences emphasize the importance of developing techniques for minimizing muscle loss during spaceflight, at least in preparation for the return to 1 G after spaceflight. New insights into the complexity and the interactive elements that contribute to the neuromuscular adaptations to space have been gained from studies of the role of exercise and/or growth factors as countermeasures of atrophy. The present chapter illustrates the inevitable interactive effects of neural and muscular systems in adapting to space. It also describes the considerable progress that has been made toward the goal of minimizing the functional impact of the stimuli that induce the neuromuscular adaptations to space.
    Keywords: Aerospace Medicine
    Type: Advances in space biology and medicine (ISSN 1569-2574); 4; 33-67
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: In the present study of rats, we examined the role, during 2 wk of hindlimb suspension, of growth hormone/insulin-like growth factor I (GH/IGF-I) administration and/or brief bouts of resistance exercise in ameliorating the loss of myonuclei in fibers of the soleus muscle that express type I myosin heavy chain. Hindlimb suspension resulted in a significant decrease in mean soleus wet weight that was attenuated either by exercise alone or by exercise plus GH/IGF-I treatment but was not attenuated by hormonal treatment alone. Both mean myonuclear number and mean fiber cross-sectional area (CSA) of fibers expressing type I myosin heavy chain decreased after 2 wk of suspension compared with control (134 vs. 162 myonuclei/mm and 917 vs. 2,076 micron2, respectively). Neither GH/IGF-I treatment nor exercise alone affected myonuclear number or fiber CSA, but the combination of exercise and growth-factor treatment attenuated the decrease in both variables. A significant correlation was found between mean myonuclear number and mean CSA across all groups. Thus GH/IGF-I administration and brief bouts of muscle loading had an interactive effect in attenuating the loss of myonuclei induced by chronic unloading.
    Keywords: Aerospace Medicine
    Type: Journal of applied physiology (Bethesda, Md. : 1985) (ISSN 8750-7587); 83; 6; 1857-61
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...