ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aerospace Medicine  (5)
Collection
Keywords
Years
  • 1
    Publication Date: 2011-08-24
    Description: We tested the hypothesis that one bout of maximal exercise performed at the conclusion of prolonged simulated microgravity would improve blood pressure stability during an orthostatic challenge. Heart rate (HR), mean arterial blood pressure (MAP), norepinephrine (NE), epinephrine (E), arginine vasopressin (AVP), plasma renin activity (PRA), atrial natriuretic peptide (ANP), cardiac output (Q), forearm vascular resistance (FVR), and changes in leg volume were measured during lower body negative pressure (LBNP) to presyncope in seven subjects immediately prior to reambulation from 16 days of 6 degrees head-down tilt (HDT) under two experimental conditions: 1) after maximal supine cycle ergometry performed 24 h before returning to the upright posture (exercise) and 2) without exercise (control). After HDT, the reduction of LBNP tolerance time from pre-HDT levels was greater (P = 0.041) in the control condition (-2.0 +/- 0.2 min) compared with the exercise condition (-0.4 +/- 0.2 min). At presyncope after HDT, FVR and NE were higher (P 〈 0.05) after exercise compared with control, whereas MAP, HR, E, AVP, PRA, ANP, and leg volume were similar in both conditions. Plasma volume (PV) and carotid-cardiac baroreflex sensitivity were reduced after control HDT, but were restored by the exercise treatment. Maintenance of orthostatic tolerance by application of acute intense exercise after 16 days of simulated microgravity was associated with greater circulating levels of NE, vasoconstriction, Q, baroreflex sensitivity, and PV.
    Keywords: Aerospace Medicine
    Type: The American journal of physiology (ISSN 0002-9513); Volume 271; 4 Pt 2; R837-47
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Cutaneous vasodilation and sweat rate are reduced during a thermal challenge after simulated and actual microgravity exposure. The effects of microgravity exposure on cutaneous vasodilator capacity and on sweat gland function are unknown. The purpose of this study was to test the hypothesis that simulated microgravity exposure, using the 6 degrees head-down tilt (HDT) bed rest model, reduces maximal forearm cutaneous vascular conductance (FVC) and sweat gland function and that exercise during HDT preserves these responses. To test these hypotheses, 20 subjects were exposed to 14 days of strict HDT bed rest. Twelve of those subjects exercised (supine cycle ergometry) at 75% of pre-bed rest heart rate maximum for 90 min/day throughout HDT bed rest. Before and after HDT bed rest, maximal FVC was measured, via plethysmography, by heating the entire forearm to 42 degrees C for 45 min. Sweat gland function was assessed by administering 1 x 10(-6) to 2 M acetylcholine (9 doses) via intradermal microdialysis while simultaneously monitoring sweat rate over the microdialysis membranes. In the nonexercise group, maximal FVC and maximal stimulated sweat rate were significantly reduced after HDT bed rest. In contrast, these responses were unchanged in the exercise group. These data suggest that 14 days of simulated microgravity exposure, using the HDT bed rest model, reduces cutaneous vasodilator and sweating capacity, whereas aerobic exercise training during HDT bed rest preserves these responses.
    Keywords: Aerospace Medicine
    Type: Journal of applied physiology (Bethesda, Md. : 1985) (ISSN 8750-7587); 94; 6; 2330-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: We compared the aortic-cardiac baroreflex sensitivity in eight average fit (AF: VO2max = 44.7 +/- 1.3 ml.kg-1 x min-1) and seven high fit (HF: VO2max = 64.1 +/- 1.7 ml.min-1 x kg-1) healthy young men during hypotension elicited by steady state sodium nitroprusside (SN) infusion. During SN mean arterial pressure (MAP) was similarly decreased in AF (-12.6 +/- 1.0 mm Hg) and HF (-12.1 +/- 1.1 mm Hg). However, the increases in heart rate (HR) were less (P 〈 0.023) in HF (15 +/- 3 bpm) than AF (25 +/- 1 bpm). When sustained neck suction (NS, -22 +/- 1 torr in AF and -20 +/- 1 torr in HF, P 〉 0.05) was applied to counteract the decreased carotid sinus transmural pressure during SN, thereby isolating the aortic baroreceptors, the increased HR remained less (P 〈 0.021) in HF (8 +/- 2 bpm) than AF (16 +/- 2 bpm). During both SN infusion and SN+NS, the calculated gains (i.e., delta HR/delta MAP) were significantly greater in AF (2.1 +/- 0.3 and 1.3 +/- 0.2 bpm.mm Hg-1) than HF (1.2 +/- 0.2 and 0.6 +/- 0.2 bpm.mm Hg-1). However, the estimated carotid-cardiac baroreflex sensitivity (i.e., the gain difference between the stage SN and SN + NS) was not different between AF (0.7 +/- 0.2 bpm.mm Hg-1) and HF (0.6 +/- 0.1 bpm.mm Hg-1). These data indicated that the aortic-cardiac baroreflex sensitivity during hypotension was significantly diminished with endurance exercise training.
    Keywords: Aerospace Medicine
    Type: Medicine and science in sports and exercise (ISSN 0195-9131); 25; 9; 1024-30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: To examine the dynamic properties of baroreflex function, we measured beat-to-beat changes in arterial blood pressure (ABP) and heart rate (HR) during acute hypotension induced by thigh cuff deflation in 10 healthy subjects under supine resting conditions and during progressive lower body negative pressure (LBNP). The quantitative, temporal relationship between ABP and HR was fitted by a second-order autoregressive (AR) model. The frequency response was evaluated by transfer function analysis. Results: HR changes during acute hypotension appear to be controlled by an ABP error signal between baseline and induced hypotension. The quantitative relationship between changes in ABP and HR is characterized by a second-order AR model with a pure time delay of 0.75 s containing low-pass filter properties. During LBNP, the change in HR/change in ABP during induced hypotension significantly decreased, as did the numerator coefficients of the AR model and transfer function gain. Conclusions: 1) Beat-to-beat HR responses to dynamic changes in ABP may be controlled by an error signal rather than directional changes in pressure, suggesting a "set point" mechanism in short-term ABP control. 2) The quantitative relationship between dynamic changes in ABP and HR can be described by a second-order AR model with a pure time delay. 3) The ability of the baroreflex to evoke a HR response to transient changes in pressure was reduced during LBNP, which was due primarily to a reduction of the static gain of the baroreflex.
    Keywords: Aerospace Medicine
    Type: American journal of physiology. Heart and circulatory physiology (ISSN 0363-6135); 280; 1; H407-19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-15
    Description: Prolonged exposure to microgravity or its analogues impairs thermoregulation in humans evidenced by higher internal temperatures following the exposure during a thermal challenge. Although the mechanism leading to this response has not been clearly delineated, we identified that prolonged head-down tilt (HDT) markedly impairs thermoregulatory reflex control of skin blood flow, as demonstrated by an increased internal temperature threshold for cutaneous vasodilation, and by a reduced slope of the relationship between the elevation in skin blood flow relative to the elevation in internal temperature. Recently, Fortney et al. identified similar responses in two individuals following 115 days of microgravity exposure. One possible mechanism leading to altered cutaneous vasodilation during a thermal challenge following actual or simulated microgravity exposure may be associated with baroreflex-mediated attenuation in the elevation of skin blood flow. During a heat stress the elevation in skin blood flow is accomplished through a combination of increased cutaneous vascular conductance and cardiac output, both of which result in central venous pressure (CVP) decreasing 2-6 mmHg. Reductions in CVP of this magnitude in normothermia decrease muscle blood flow and skin blood flow presumably through unloading the cardiopulmonary baroreceptors. It is unclear whether the reduction in CVP, and accompanying cardiopulmonary baroreceptor unloading, during passive heating buffers the elevation in skin blood flow. That is, would the elevation in skin blood flow be greater if CVP did not decrease, or decreased to a lesser extent during the heat stress? Conversely, if CVP decreased to a greater extend during a thermal challenge following a perturbation such as prolonged HDT, would the elevation in skin blood flow be attenuated during that thermal challenge? Given that prolonged HDT decreases plasma volume and central venous pressure, such a finding would provide a plausible hypothesis to explain why skin blood flow does not increase to the same extent during a heat stress following simulated or actual microgravity exposure. Thus, the purpose of this project was to identify whether cardiopulmonary baroreceptor unloading coincident with heat stress buffers the elevation in skin blood flow.
    Keywords: Aerospace Medicine
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 267-270
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...