ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2015-05-23
    Beschreibung: Species interaction networks are shaped by abiotic and biotic factors. Here, as part of the Tara Oceans project, we studied the photic zone interactome using environmental factors and organismal abundance profiles and found that environmental factors are incomplete predictors of community structure. We found associations across plankton functional types and phylogenetic groups to be nonrandomly distributed on the network and driven by both local and global patterns. We identified interactions among grazers, primary producers, viruses, and (mainly parasitic) symbionts and validated network-generated hypotheses using microscopy to confirm symbiotic relationships. We have thus provided a resource to support further research on ocean food webs and integrating biological components into ocean models.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lima-Mendez, Gipsi -- Faust, Karoline -- Henry, Nicolas -- Decelle, Johan -- Colin, Sebastien -- Carcillo, Fabrizio -- Chaffron, Samuel -- Ignacio-Espinosa, J Cesar -- Roux, Simon -- Vincent, Flora -- Bittner, Lucie -- Darzi, Youssef -- Wang, Jun -- Audic, Stephane -- Berline, Leo -- Bontempi, Gianluca -- Cabello, Ana M -- Coppola, Laurent -- Cornejo-Castillo, Francisco M -- d'Ovidio, Francesco -- De Meester, Luc -- Ferrera, Isabel -- Garet-Delmas, Marie-Jose -- Guidi, Lionel -- Lara, Elena -- Pesant, Stephane -- Royo-Llonch, Marta -- Salazar, Guillem -- Sanchez, Pablo -- Sebastian, Marta -- Souffreau, Caroline -- Dimier, Celine -- Picheral, Marc -- Searson, Sarah -- Kandels-Lewis, Stefanie -- Tara Oceans coordinators -- Gorsky, Gabriel -- Not, Fabrice -- Ogata, Hiroyuki -- Speich, Sabrina -- Stemmann, Lars -- Weissenbach, Jean -- Wincker, Patrick -- Acinas, Silvia G -- Sunagawa, Shinichi -- Bork, Peer -- Sullivan, Matthew B -- Karsenti, Eric -- Bowler, Chris -- de Vargas, Colomban -- Raes, Jeroen -- New York, N.Y. -- Science. 2015 May 22;348(6237):1262073. doi: 10.1126/science.1262073.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Rega Institute KU Leuven, Herestraat 49, 3000 Leuven, Belgium. VIB Center for the Biology of Disease, VIB, Herestraat 49, 3000 Leuven, Belgium. Department of Applied Biological Sciences (DBIT) Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium. ; Station Biologique de Roscoff, CNRS, UMR 7144, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universites, Universite Pierre et Marie Curie (UPMC) Universite Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. ; Station Biologique de Roscoff, CNRS, UMR 7144, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universites, Universite Pierre et Marie Curie (UPMC) Universite Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Ecole Normale Superieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris, F-75005 France. ; Department of Microbiology and Immunology, Rega Institute KU Leuven, Herestraat 49, 3000 Leuven, Belgium. VIB Center for the Biology of Disease, VIB, Herestraat 49, 3000 Leuven, Belgium. Department of Applied Biological Sciences (DBIT) Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium. Interuniversity Institute of Bioinformatics in Brussels (IB), ULB Machine Learning Group, Computer Science Department, Universite Libre de Bruxelles (ULB), Brussels, Belgium. ; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA. ; VIB Center for the Biology of Disease, VIB, Herestraat 49, 3000 Leuven, Belgium. Ecole Normale Superieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris, F-75005 France. ; Station Biologique de Roscoff, CNRS, UMR 7144, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universites, Universite Pierre et Marie Curie (UPMC) Universite Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Ecole Normale Superieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris, F-75005 France. Institut de Biologie Paris-Seine, CNRS FR3631, F-75005, Paris, France. ; VIB Center for the Biology of Disease, VIB, Herestraat 49, 3000 Leuven, Belgium. Department of Applied Biological Sciences (DBIT) Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium. ; Department of Microbiology and Immunology, Rega Institute KU Leuven, Herestraat 49, 3000 Leuven, Belgium. VIB Center for the Biology of Disease, VIB, Herestraat 49, 3000 Leuven, Belgium. ; CNRS, UMR 7093, Laboratoire d'Oceanographie de Villefranche (LOV), Observatoire Oceanologique, F-06230 Villefranche-sur-mer, France. Sorbonne Universites, UPMC Paris 06, UMR 7093, Laboratoire d'Oceanographie de Villefranche (LOV), Observatoire Oceanologique, F-06230 Villefranche-sur-mer, France. ; Interuniversity Institute of Bioinformatics in Brussels (IB), ULB Machine Learning Group, Computer Science Department, Universite Libre de Bruxelles (ULB), Brussels, Belgium. ; Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-Consejo Superior de Investigaciones Cientificas (CSIC), Pg. Maritim de la Barceloneta, 37-49, Barcelona E08003, Spain. ; Sorbonne Universites, UPMC, Universite Paris 06, CNRS-Institut pour la Recherche et le Developpement-Museum National d'Histoire Naturelle, Laboratoire d'Oceanographie et du Climat: Experimentations et Approches Numeriques (LOCEAN) Laboratory, 4 Place Jussieu, 75005, Paris, France. ; KU Leuven, Laboratory of Aquatic Ecology, Evolution and Conservation, Charles Deberiotstraat 32, 3000 Leuven. ; PANGAEA, Data Publisher for Earth and Environmental Science, University of Bremen, Hochschulring 18, 28359 Bremen, Germany. MARUM, Center for Marine Environmental Sciences, University of Bremen, Hochschulring 18, 28359 Bremen, Germany. ; Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. Directors' Research, European Molecular Biology Laboratory, Heidelberg, Germany. ; Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011 Kyoto, Japan. ; Department of Geosciences, Laboratoire de Meteorologie Dynamique (LMD), Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris Cedex 05, France. Laboratoire de Physique des Ocean, Universite de Bretagne Occidentale (UBO)-Institut Universaire Europeen de la Mer (IUEM), Palce Copernic, 29820 Polouzane, France. ; Commissariat a l'Energie Atomique (CEA), Genoscope, 2 rue Gaston Cremieux, 91000 Evry, France. CNRS, UMR 8030, 2 rue Gaston Cremieux, 91000 Evry, France. Universite d'Evry, UMR 8030, CP5706 Evry, France. ; Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. ; Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. Max-Delbruck-Centre for Molecular Medicine, 13092 Berlin, Germany. ; Ecole Normale Superieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris, F-75005 France. Directors' Research, European Molecular Biology Laboratory, Heidelberg, Germany. jeroen.raes@vib-kuleuven.be vargas@sb-roscoff.fr cbowler@biologie.ens.fr karsenti@embl.de. ; Ecole Normale Superieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris, F-75005 France. jeroen.raes@vib-kuleuven.be vargas@sb-roscoff.fr cbowler@biologie.ens.fr karsenti@embl.de. ; Station Biologique de Roscoff, CNRS, UMR 7144, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universites, Universite Pierre et Marie Curie (UPMC) Universite Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. jeroen.raes@vib-kuleuven.be vargas@sb-roscoff.fr cbowler@biologie.ens.fr karsenti@embl.de. ; Department of Microbiology and Immunology, Rega Institute KU Leuven, Herestraat 49, 3000 Leuven, Belgium. VIB Center for the Biology of Disease, VIB, Herestraat 49, 3000 Leuven, Belgium. Department of Applied Biological Sciences (DBIT) Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium. jeroen.raes@vib-kuleuven.be vargas@sb-roscoff.fr cbowler@biologie.ens.fr karsenti@embl.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25999517" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; *Food Chain ; Host Specificity ; Oceans and Seas ; Phylogeny ; Plankton/*classification/*physiology ; Platyhelminths/classification/physiology ; Sunlight ; *Symbiosis ; Viruses/classification
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-07-19
    Beschreibung: Liver function, especially the rate of metabolic enzyme activities, determines the concentration of circulating drugs and the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand any effects of spaceflight on the enzymes of the liver. Dietary factors and exposure to radiation are aspects of spaceflight that are potential oxidative stressors and both can be modeled in ground experiments. In this experiment, we examined the effects of high dietary iron and low dose gamma radiation (individually and combined) on the gene expression of enzymes involved in drug metabolism, redox homeostasis, and DNA repair. METHODS All procedures were approved by the JSC Animal Care and Use Committee. Male Sprague-Dawley rats were divided into 4 groups (n=8); control, high Fe diet (650 mg iron/kg), radiation (fractionated 3 Gy exposure from a Cs- 137 source) and combined high Fe diet + radiation exposure. Animals were euthanized 24h after the last treatment of radiation; livers were removed immediately and flash -frozen in liquid nitrogen. Expression of genes thought to be involved in redox homeostasis, drug metabolism and DNA damage repair was measured by RT-qPCR. Where possible, protein expression of the same genes was measured by western blotting. All data are expressed as % change in expression normalized to reference gene expression; comparisons were then made of each treatment group to the sham exposed/ normal diet control group. Data was considered significant at p〈 0.5. RESULTS Among the redox homeostasis genes examined, metallothionein showed a significant down regulation in the radiation treated group (-3.85 fold) and a trend toward down regulation in the high Fe + rad group. Metallothionein is involved in the regulation of physiological metals and also has antioxidant activities. Among the drug metabolism genes examined, ATP binding cassette subfamily B (Abcb1b) gene expression increased more than 10-fold in both groups that received radiation treatments. This increased expression was also seen at the protein level. This ABC transporter carries many different compounds across cell membranes, including administered medications. The cytochrome P450 2E1 enzyme, a mixed-function oxidase that deactivates some medications and activates others, showed about a 2-fold increase in gene expression in both radiation-treated groups, with a trend toward increased expression at the protein level. Expression of epoxide hydrolase, which detoxifies polycyclic aromatic hydrocarbons, showed similar 2-fold increases. Among the DNA repair genes examined, expression of RAD51 was significantly down regulated (1.5 fold) in the radiation treated group. RAD51 is involved in repair of double-stranded DNA breaks. CONCLUSION This experiment used 2 different sources of physiological oxidative stress, administered separately and together, and examined their impacts on liver gene and protein expression. It is clear that significant changes occurred in expression of several genes and proteins in the radiation-treated animals. If the results from this ground analog of portions of the spaceflight environment hold true for the spaceflight environment itself, the physiological roles of the affected enzymes (drug transport and metabolism, redox homeostasis) could mean consequences in redox homeostasis or the pharmacokinetics of administered medications
    Schlagwort(e): Aerospace Medicine
    Materialart: JSC-CN-29885 , 2014 NASA Human Research Program Investigators'' Workshop (HRP 2014); Feb 12, 2014 - Feb 13, 2014; Galveston, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-07-19
    Beschreibung: The Food and Drug Association Adverse Event Reports (FDA AER) from 2009-2011 were used to create a database from millions of known and suspected medication-related adverse events among the general public. Vision changes, sometimes associated with intracranial pressure changes (VIIP), have been noted in some long duration crewmembers. Changes in vision and blood pressure (which can subsequently affect intracranial pressure) are fairly common side effects of medications. The purpose of this study was to explore the possibility of medication involvement in crew VIIP symptoms. Reports of suspected medication-related adverse events may be filed with the Food and Drug Administration (FDA) by medical professionals or consumers. Quarterly compilations of these reports are available for public download. Adverse Event Reporting System (AERS) reports from 1/1/2009- 6/30/2012 were downloaded and compiled into a searchable database for this study. Reports involving individuals under the age of 18 and older than 65 were excluded from this analysis. Case reports involving chronic diseases such as cancer, diabetes, multiple sclerosis and other serious conditions were also excluded. A scan of the medical literature for medication-related VIIP-like adverse events was used to create a list of suspect medications. These medications, as well as certain medications used frequently by ISS crew, were used to query the database. Queries for use of suspected medications were run, and the nature of the symptoms reported in those cases were tabulated. Symptoms searched in the FDA AERS were chosen to include the typical symptoms noted in crewmembers with VIIP. Vision symptoms searched were: visual acuity reduced, visual impairment, and vitreous floaters. Pressure changes included: abnormal sensation in eye, intracranial pressure increased, intraocular pressure increased, optic neuritis, optic neuropathy, and papilloedema. Limited demographic information is included with the FDA AERS; relevant data were also sorted by age and sex from each report. RESULTS Steroid-containing oral contraceptives had the highest number of reports associated with vision (n=166) and pressure symptoms (n=54). Corticosteroid-containing medications were also high; prednisone, for example, had 137 reports of vision issues and 79 of pressure issues. Pain relievers were also a medication class with vision and pressure-related adverse events reported. Common over-the-counter medications such as acetaminophen, aspirin and ibuprofen each had multiple reports for both vision and pressure symptoms. Antimicrobial medications ciprofloxacin and diflucan were also associated with a number of vision and pressure-related AERS. Unexpectedly, pseudoephedrine and promethazine were mentioned in fewer than 20 reports each over the 3.5 years of data examined. The FDA AERS represents a wealth of data, but there are several limitations to its use. The data are entered by the public or medical professionals, but are not checked for accuracy or completeness and may even be entered multiple times. The causal relationship between a particular adverse event and a particular medication is not tested. The cases represent a broad spectrum of demographics, occupations, and health histories, and thus do not model the astronaut population well. There is no information on the frequency of use of a medication for comparison purposes; it is not possible to assign a rate for any particular adverse event. Nonetheless, there are compelling trends. Use of corticosteroid-containing medications, pain relievers (even over-the-counter), and oral contraceptives were associated with higher numbers of vision- or intracranial pressure-related adverse events. In general, there were more vision problems than pressure problems reported. Certain medications that were once suspected of playing a role in the crew VIIP syndrome, namely pseudoephedrine and promethazine, were found to have extremely low numbers of VIIP-like AERS in the FDA data. However, crew use of corticosteroid-containing medications and pain relievers may warrant additional investigation
    Schlagwort(e): Aerospace Medicine
    Materialart: JSC-CN-29901 , NASA Human Research Prograam Investigators'' Meeting; Feb 12, 2014 - Feb 14, 2014; Galveston, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...