ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aerospace Medicine; Systems Analysis and Operations Research  (1)
  • Carotid artery  (1)
Collection
Keywords
Publisher
Years
  • 1
    ISSN: 1573-9686
    Keywords: Blood flow ; Magnetic resonance imaging ; Numerical flow modeling ; Carotid artery ; Three-dimensional ; Wall shear stress ; Atherosclerosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract Purpose: Combining computational blood flow modeling with three-dimensional medical imaging provides a new approach for studying links between hemodynamic factors and arterial disease. Although this provides patient-specific hemodynamic information, it is subject to several potential errors. This study quantifies some of these errors and identifies optimal reconstruction methodologies. Methods: A carotid artery bifurcation phantom of known geometry was imaged using a commercial magnetic resonance (MR) imager. Three-dimensional models were reconstructed from the images using several reconstruction techniques, and steady and unsteady blood flow simulations were performed. The carotid bifurcation from a healthy, human volunteer was then imaged in vivo, and geometric models were reconstructed. Results: Reconstructed models of the phantom showed good agreement with the gold standard geometry, with a mean error of approximately 15% between the computed wall shear stress fields. Reconstructed models of the in vivo carotid bifurcation were unacceptably noisy, unless lumenal profile smoothing and approximating surface splines were used. Conclusions: All reconstruction methods gave acceptable results for the phantom model, but in vivo models appear to require smoothing. If proper attention is paid to smoothing and geometric fidelity issues, models reconstructed from MR images appear to be suitable for use in computational studies of in vivo hemodynamics. © 1999 Biomedical Engineering Society. PAC99: 8719Uv, 8761-c, 0705Pj, 8710+e
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: To investigate ophthalmic changes in spaceflight, we would like to predict the impact of blood dysregulation and elevated intracranial pressure (ICP) on Intraocular Pressure (IOP). Unlike other physiological systems, there are very few lumped parameter models of the eye. The eye model described here is novel in its inclusion of the human choroid and retrobulbar subarachnoid space (rSAS), which are key elements in investigating the impact of increased ICP and ocular blood volume. Some ingenuity was required in modeling the blood and rSAS compartments due to the lack of quantitative data on essential hydrodynamic quantities, such as net choroidal volume and blood flowrate, inlet and exit pressures, and material properties, such as compliances between compartments.
    Keywords: Aerospace Medicine; Systems Analysis and Operations Research
    Type: GRC-E-DAA-TN20061 , Human Research Program Investigators'' Workshop: Integrated Pathways to Mars; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...