ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Timeline, partial treatment, and alternate medications were added to the IMM to improve the fidelity of this model to enhance decision support capabilities. Using standard design reference missions, IMM VV testing compared outputs from the current operational IMM (v3) with those from the model with added functionalities (v4). These new capabilities were examined in a comparative, stepwise approach as follows: a) comparison of the current operational IMM v3 with the enhanced functionality of timeline alone (IMM 4.T), b) comparison of IMM 4.T with the timeline and partial treatment (IMM 4.TPT), and c) comparison of IMM 4.TPT with timeline, partial treatment and alternative medication (IMM 4.0).
    Keywords: Aerospace Medicine; Statistics and Probability
    Type: GRC-E-DAA-TN29814 , 2016 NASA Human Research Program InvestigatorsaEuro(TM) Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Changes in urine chemistry, during and post flight, potentially increases the risk of renal stones in astronauts. Although much is known about the effects of space flight on urine chemistry, no inflight incidence of renal stones in US astronauts exists and the question "How much does this risk change with space flight?" remains difficult to accurately quantify. In this discussion, we tackle this question utilizing a combination of deterministic and probabilistic modeling that implements the physics behind free stone growth and agglomeration, speciation of urine chemistry and published observations of population renal stone incidences to estimate changes in the rate of renal stone presentation. The modeling process utilizes a Population Balance Equation based model developed in the companion IWS abstract by Kassemi et al. (2016) to evaluate the maximum growth and agglomeration potential from a specified set of urine chemistry values. Changes in renal stone occurrence rates are obtained from this model in a probabilistic simulation that interrogates the range of possible urine chemistries using Monte Carlo techniques. Subsequently, each randomly sampled urine chemistry undergoes speciation analysis using the well-established Joint Expert Speciation System (JESS) code to calculate critical values, such as ionic strength and relative supersaturation. The Kassemi model utilizes this information to predict the mean and maximum stone size. We close the assessment loop by using a transfer function that estimates the rate of stone formation from combining the relative supersaturation and both the mean and maximum free stone growth sizes. The transfer function is established by a simulation analysis which combines population stone formation rates and Poisson regression. Training this transfer function requires using the output of the aforementioned assessment steps with inputs from known non-stone-former and known stone-former urine chemistries. Established in a Monte Carlo system, the entire renal stone analysis model produces a probability distribution of the stone formation rate and an expected uncertainty in the estimate. The utility of this analysis will be demonstrated by showing the change in renal stone occurrence predicted by this method using urine chemistry distributions published in Whitson et al. 2009. A comparison to the model predictions to previous assessments of renal stone risk will be used to illustrate initial validation of the model.
    Keywords: Aerospace Medicine; Statistics and Probability
    Type: GRC-E-DAA-TN29813 , 2016 NASA Human Research Program Investigators Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, Tx; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...