ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aeronautics (General)  (1)
  • 2000-2004  (1)
  • 1
    Publication Date: 2019-07-18
    Description: The Altus Cumulus Electrification Study (ACES) is an unmanned aerial vehicle (UAV)- based project that investigated thunderstorms in the vicinity of the Florida Everglades in August 2002. ACES was conducted to investigate storm electrical activity and its relationship to storm morphology, and to validate satellite-based lightning measurements. In addition, as part of the NASA sponsored UAV-based science demonstration program, this project provided a scientifically useful demonstration of the utility and promise of UAV platforms for Earth science and applications observations. ACES employed the Altus II aircraft, built by General Atomics - Aeronautical Systems, Inc. Key science objectives simultaneously addressed by ACES are to: (1) investigate lightning-storm relationships, (2) study storm electrical budgets, and provide Lightning Imaging Sensor validation. The ACES payload included electrical, magnetic, and optical sensors to remotely characterize the lightning activity and the electrical environment within and around thunderstorms. ACES contributed important electrical and optical measurements not available from other sources. Also, the high altitude vantage point of the UAV observing platform (up to 55,000 feet) provided cloud-top perspective. By taking advantage of its slow flight speed (70 to 100 knots), long endurance, and high altitude flight, the Altus was flown near, and when possible, over (but never into) thunderstorms for long periods of time that allowed investigations to be conducted over entire storm life cycles. An innovative real time weather system was used to identify and vector the aircraft to selected thunderstorms and safely fly around these storms, while, at the same time monitor the weather near our base of operations. In addition, concurrent ground-based observations that included radar (Miami and Key West WSRBD, NASA NPOL), satellite imagery, and lightning (NALDN and Los Alamos EDOT) enable the UAV measurements to be more completely interpreted and evaluated in the context of the thunderstorm structure, evolution, and environment.
    Keywords: Aeronautics (General)
    Type: International Conference on Atmospheric Electricity 2003; Jun 09, 2003 - Jun 13, 2003; Versailles; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...